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Chapter 1

Special relativity

1.1 Space-time

In the framework of the theory of special relativity, space-time is represented by
the vector space R4. An element x ∈ R4 has four components and can be written
as

x = (x0, x1, x2, x3) ≡ (x0, ~x) (1.1)

where the spatial vector ~x = (x1, x2, x3) ∈ R3 contains the spatial coordinates
of x and x0 = ct is its temporal coordinate. x will be called four-vector in the
following. At this point, we introduce the speed of light c in order to assure that all
four components of x possess the same dimensionality. It is after the introduction
of the metric tensor, to be defined below, that this constant c acquires a true
physical significance.

Within R4 we can choose a basis of four linearly independent vectors. The
most natural choice for this basis is given by the vectors (e0, e1, e2, e3) where e0
represents the unit vector along the time axis and ej with j = 1, 2, 3 represent the
unit vectors along the spatial x, y, and z axes, respectively. Any vector x ∈ R4

can now be decomposed within this standard basis. We obtain

x = x0e0 + x1e1 + x2e2 + x3e3 =
3
∑

ν=0

xνeν . (1.2)

It is useful at this point to introduce the summation convention of Einstein.
This convention simply consists in leaving out the symbol of summation

∑3
ν=0

in the above expression. In the following, we therefore write

x = xνeν (1.3)

instead of x =
∑3

ν=0 x
νeν . This convention will be generalized to more com-

plicated product expressions: if such an expression contains terms in which the
same greek letter appears as index in the superscript at some place and as index

3



4 CHAPTER 1. SPECIAL RELATIVITY

in the subscript at some other place, we consider this expression to be summed
over that very greek letter from 0 to 3.

The choice of the basis is not unique. We can choose another set of four
vectors (e′0, e

′
1, e

′
2, e

′
3) as basis of R

4 provided those new vectors are again linearly
independent. Technically, this means that the coefficients D µ

ν ∈ R describing
the representation of the new basis vectors in the old basis according to

e′ν =
3
∑

µ=0

D µ
ν eµ ≡ D µ

ν eµ , (1.4)

must form an invertible matrix D ≡ (D µ
ν )4×4 ∈ R4×4. Each four-vector x ∈ R4

can now be represented within the old basis (e0, e1, e2, e3) or within the new basis
(e′0, e

′
1, e

′
2, e

′
3) according to

x = xνeν = x′νe′ν (1.5)

giving rise to different sets of coordinates (x0, x1, x2, x3) and (x′0, x′1, x′2, x′3).
Inserting Eq. (1.4) in Eq. (1.5), we then obtain the relation

xµ = D µ
ν x′ν (1.6)

which, after the inversion of the matrix D, yields the corresponding transforma-
tion rule for the coordinates:

x′ν = (D−1) ν
µ x

µ (1.7)

As a general convention for such transformation matrices D ≡ (D µ
ν )4×4, the

element D µ
ν refers to the νth row and the µth column (with ν and µ varying from

0 to 3). Eq. (1.7) therefore effectively describes a matrix-vector multiplication of
the transpose of the inverse of D with the components of the four-vector x.

In order to properly introduce the notion of distances within the space of
four-vectors, we need to define a metric within R4. This metric is introduced by
the definition of a scalar product, i.e. by a bilinear transformation R4×R4 → R,
(x, y) 7→ xy ∈ R with

xy = gµνx
µyν ≡

3
∑

µ=0

3
∑

ν=0

gµνx
µyν (1.8)

of the two four-vectors x, y ∈ R4. The coefficients gµν ∈ R represent a tensorial
object with two indices, which can also be presented in the form of a 4×4 matrix
g ≡ (gµν)4×4 ∈ R4×4. We shall name it metric tensor in the following. It is
generally required that the scalar product be symmetric, i.e. xy = yx, which
implies gµν = gνµ for all µ, ν = 0, . . . , 3, i.e. the metric tensor is symmetric as
well. Furthermore, we require that (gµν) ∈ R4×4 be invertible. Generally, a more
stringent criterion for the definition of a scalar product is positivity, i.e. xx > 0
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for all x 6= (0, 0, 0, 0). This latter criterion shall not be respected for the definition
of the metric tensor within the space-time.

By means of the metric tensor, we can define the covector (or dual vector)
that is associated with a given four-vector x = xνeν . This covector is defined by
the coordinates

xν = gνµx
µ ≡

3
∑

µ=0

gνµx
µ (1.9)

which are also named covariant coordinates of x, in opposition to the contravari-
ant coordinates xν . The scalar product between the vectors x and y can then be
written as

xy = gµνx
µyν = xνy

ν = yµx
µ . (1.10)

It is convenient to specify the inverse of the matrix (gµν) by the matrix ele-
ments gµν ∈ R, i.e. we have

gµαg
αν = δνµ ≡

{

1 : µ = ν
0 : µ 6= ν

. (1.11)

We can then introduce the dual basis (e0, e1, e2, e3) according to

eν = gνµeµ , (1.12)

which with Eq. (1.11) yields
eµ = gµνe

ν . (1.13)

It is then straightforward to verify that the covariant coordinates of the four-
vector x describe the representation of x within this dual basis, i.e.

x = xνeν = xµe
µ . (1.14)

In the presence of a basis transformation eν 7→ e′ν = D µ
ν eµ, the dual basis

transforms according to
eν 7→ e′ν = Dν

µe
µ (1.15)

where we define the elements of the dual transformation matrix as

Dν
µ = gανgβµD

β
α . (1.16)

In analogy with Eq. (1.6), we can then relate the new covariant coordinates x′ν
with the old ones according to

xµ = Dν
µx

′
ν (1.17)

which yields in extension to Eq. (1.5)

x = xνe
ν = x′νe

′ν . (1.18)
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Correspondingly, the new coefficients g′µν of the metric tensor under this basis
transformation are related to the old ones according to

gµν = Dα
µD

β
νg

′
αβ . (1.19)

In the following, we specifically consider basis transformations that leave the
form of the metric tensor invariant, i.e. we require g′µν = gµν for all µ, ν = 0, . . . , 3.
Inserting this identification in Eq. (1.19), multiplying this equation on both sides
with gνσ, summing the resulting equation over ν (which is automatically implied
by Einstein’s summation convention), and using Eqs. (1.11) and (1.16), we finally
obtain

δσµ = Dα
µD

σ
α (1.20)

as necessary and sufficient condition for having g′µν = gµν for all µ, ν. We then
have

(D−1) ν
µ = Dν

µ (1.21)

for the matrix elements of the inverse of D. This allows us to re-express Eq. (1.7)
as

x′ν = Dν
µx

µ . (1.22)

The condition (1.20) for keeping g′ = g under the basis transformation D can
also be reformulated in terms of products of matrices. To this end, we first note
that Eq. (1.19) would be equivalent to the relation

g = DTgD (1.23)

under the identification g′ = g, which involves the product of the matrices D ≡
(D µ

ν )4×4, g ≡ (gµν)4×4, and of the transpose DT of D. Eq. (1.23) is obviously
equivalent to

D−1 = g−1DTg (1.24)

which directly yields Eq. (1.21) when being expressed in its individual matrix
elements.

For the case of a Euclidean space, we would naturally choose the metric tensor
as the identity matrix I4×4 within R4×4. In that case, Eq. (1.24) would simplify
to the condition DTD = I4×4. The set of basis transformations that leave the
metric invariant is then given by the group of orthogonal transformations O(4)
describing rotations of the coordinate system eventually to be combined (in the
case detD = −1) with a mirror transformation.
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1.2 Lorentz transformations

In the case of space-time, the metric tensor reads

g = diag(1,−1,−1,−1) =









1 0 0 0
0 −1 0 0
0 0 −1 0
0 0 0 −1









≡









1
−1

−1
−1









= g−1 .

(1.25)
Clearly, the scalar product defined by this metric tensor through Eq. (1.8) is not
positive definite. “Distances” between two different four-vectors in space-time can
therefore be negative or zero, the latter even if the two concerned four-vectors
do not coincide. We also note that the temporal component plays a different
role in the definition of the metric than the spatial components, which is the
reason why we separate in Eq. (1.25) the first (temporal) row and column from
the other three (spatial) rows and columns by means of horizontal and vertical
lines, respectively. Equipped with the metric (1.25), the vector space M = R4 is
named Minkowski space.

As in the case of a Euclidean space, the set of basis transformations D that
leave the metric invariant still forms a group. Indeed, it is straightforward to
verify that D = D1D2 satisfies Eq. (1.23) provided the matrices D1 and D2

satisfy Eq. (1.23) individually. Moreover, also the inverse matrices of D1 and D2

satisfy Eq. (1.23) as well as the identity matrix I4×4. We therefore define

G =
{

D ∈ R
4×4 : DTgD = g

}

(1.26)

with g given by Eq. (1.25) as the Lorentz group. Elements D ∈ G of the Lorentz
group are named Lorentz transformations.

Using the fact that det g = −1, we obtain from Eq. (1.23) (detD)2 = 1, i.e.,
detD = ±1 for any Lorentz transformation D ∈ G. As in the case of a Euclidean
space, these two different possibilities correspond to transformations D that keep
the orientation of the basis invariant (detD = +1) or involve mirror operations
(detD = −1). In contrast to a Euclidean space, the Minkowski space also pro-
vides another kind of mirror operation which affects the temporal component
only. Considering the uppermost leftmost element of the matrix equation (1.23),
we have

1 =
(

DTgD
)

00
= (D 0

0 )2 − (D 1
1 )2 − (D 2

2 )2 − (D 3
3 )2 (1.27)

from which we infer

(D 0
0 )2 = 1 + (D 1

1 )2 + (D 2
2 )2 + (D 3

3 )2 ≥ 1 , (1.28)

i.e. we have either D 0
0 ≥ 1 or D 0

0 ≤ −1.
In analogy with the special orthogonal group SO(4) in the Euclidean case, we

can define a special sub-group of the Lorentz group, the restricted Lorentz group

L =
{

D ∈ G : detD = 1 and D 0
0 ≥ 1

}

⊂ G , (1.29)
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which contains only proper Lorentz transformations, i.e. Lorentz transformations
that keep the orientation of the spatial axes invariant and do not exchange the
past with the future. We can then associate with each D ∈ G a unique proper
Lorentz transformation D̃ ∈ L such that

• D = D̃ if detD = 1 and D 0
0 ≥ 1,

• D = PD̃ if detD = −1 and D 0
0 ≥ 1,

• D = TD̃ if detD = −1 and D 0
0 ≤ −1 and

• D = PTD̃ if detD = 1 and D 0
0 ≤ −1,

where we define by P = g = diag(1,−1,−1,−1) and T = −g = diag(−1, 1, 1, 1)
the spatial and temporal mirror operations, respectively.

It therefore remains to characterize all possible proper Lorentz transforma-
tions D̃ ∈ L. As for the case of the special orthogonal group SO(3) describ-
ing basis transformations in a three-dimensional Euclidean space, the restricted
Lorentz group L contains all possible geometric rotations of the spatial coordi-
nate system. In general, those rotations can be described by three angle pa-
rameters ω1, ω2, ω3 ∈ R corresponding, e.g., to the Euler angles associated with
the rotation. We adopt a slightly different representation of a rotational Lorentz
transformation D ∈ L in terms of the angle parameters, namely through

D = exp

[

3
∑

j=1

ωjIj

]

(1.30)

with the matrices

I1 =









0 0 0 0
0 0 0 0
0 0 0 1
0 0 −1 0









, I2 =









0 0 0 0
0 0 0 −1
0 0 0 0
0 1 0 0









, I3 =









0 0 0 0
0 0 1 0
0 −1 0 0
0 0 0 0









(1.31)
which generate rotations around the x, y, and z axis, respectively.

There is, however, another kind of Lorentz transformations which involve
boosts. The latter refer to transformations that change from a stationary spatial
coordinate system to a moving system propagating with constant speed. Con-
sider, e.g., such a boost in the direction of e1, i.e. the new basis vectors e′1, e

′
2, e

′
3

keep their spatial orientation, but the origin upon which their are centred moves
with constant speed v along e1, such that it coincides with the stationary ori-
gin of the old coordinate system at time t = 0. It is natural to state that the
longitudinal coordinate x1 of a spatial vector ~x turns into x′1 = x1 − vt in that
case, while the other two spatial coordinates do not change. This is, however, no
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longer true for speeds v that come close to the speed of light. In that case, it is
known that the more general expression

x′1 =
x1 − vt
√

1− v2

c2

(1.32)

has to be used for the longitudinal coordinate along e′1, while we have indeed

x′2 = x2 and x′3 = x3 (1.33)

for the other two spatial coordinates. Moreover, also the notion of time changes
in the moving frame, namely according to

t′ =
t− v

c2
x1

√

1− v2

c2

. (1.34)

Defining β = v/c and γ = 1/
√

1− β2, we can write the transformation of the
associated four-vector x = (x0, ~x) with x0 ≡ ct as x′ν = Dν

µx
µ or xν = D ν

µ x
′µ

with the transformation matrix

D ≡
(

D ν
µ

)

=









γ γβ 0 0
γβ γ 0 0
0 0 1 0
0 0 0 1









. (1.35)

Clearly, Eq. (1.35) represents a proper Lorentz transformation as it satisfies
Eq. (1.23) together with detD = 1 and D 0

0 ≥ 1.
It is useful to consider once more the nonrelativistic regime |v| ≪ c. In that

case, we can linearize Eq. (1.35) in v/c by approximating γ ≃ 1+O(v2/c2). This
yields

D ≃ 1− βJ1 (1.36)

with

J1 =









0 −1 0 0
−1 0 0 0
0 0 0 0
0 0 0 0









. (1.37)

It corresponds to the nonrelativistic Galilei tranformation x1 = x′1+βx′0 proposed
above as far as the spatial coordinates are concerned; the temporal coordinate,
however, changes as well, namely according to x0 = x′0 + βx′1.

Formally, a boost to a frame moving with a finite speed v coming close to
the speed of light can always be represented as a succession of a large number
of infinitesimal transformations of the type (1.36) each of them incrementing the
speed of the frame by a small amount β ≪ c. Choosing β = τ/N for some
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finite τ ∈ R where N is the number of such infinitesimal transformations to
be performed, we obtain for the resulting Lorentz transformation in the limit
N →∞

D = lim
N→∞

(

1− τ

N
J1

)N

= exp [−τJ1] =









cosh τ sinh τ 0 0
sinh τ cosh τ 0 0
0 0 1 0
0 0 0 1









, (1.38)

which corresponds to a frame that moves with the speed v = c tanh τ in the old
coordinate system. The matrix J1 plays then be role of a generator of boosts
along the direction of e1.

In analogy with rotations, we can define two other generators

J2 =









0 0 −1 0
0 0 0 0
−1 0 0 0
0 0 0 0









and J3 =









0 0 0 −1
0 0 0 0
0 0 0 0
−1 0 0 0









(1.39)

corresponding to boosts in the directions of e2 and e3, respectively. This alto-
gether yields the insight that 6 parameters Ω1,Ω2,Ω3, ω1, ω2, ω3 ∈ R are needed
in order to fully characterize a given proper Lorentz transformation D ∈ L in a
unique manner, namely through

D = exp

[

3
∑

j=1

(ΩjJj + ωjIj)

]

, (1.40)

which generalizes Eq. (1.30).

1.3 Minkowski geometry

After this group theoretical characterization of the Lorentz transformations, we
now discuss the physical implications of the form (1.25) of the metric tensor in the
Minkowski space M = R4. From the physical point of view, we shall name a four-
vector x = (x0, x1, x2, x3) ∈ M an event, referring to something that happens at
some place ~x = (x1, x2, x3) at a given time t = x0/c. Coordinate frames in which
the metric tensor has the form (1.25), i.e. g = diag(1,−1,−1,−1), are named
inertial frames, as they are either stationary or move with constant speed v with
respect to a given reference frame, in perfect analogy with the inertial motion of
a particle that is not subject to any force. As we have seen in Section 1.2, the
notions of “space” and “time” change when we perform a Lorentz transformation
to a moving frame. What used to be the temporal coordinate x0 of the event
x in the original reference frame turns into a mixture of temporal and spatial
coordinates in the moving frame, and similarly for the spatial coordinates.
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Figure 1.1: Sketches of the invariant manifolds M(±)
r (left panel), K(±) (middle

panel), and Rℓ (right panel) of the Minkowski space, plotted as a function of the
time t and the two spatial coordinates x1 and x2.

The essence of the theory of relativity is the claim that there is no “reference”

frame that is distinguished with respect to other inertial frames. “Time” and
“space” are therefore no absolute notions, but notions defined relative to a given
inertial frame. This principle must be respected by physical laws as well. It
must therefore be possible to formulate those laws such that they have the same

structural form in each inertial frame.

It straightforwardly follows from this principle of relativity that information
cannot travel faster than the speed of light. To show this particular consequence,
we discuss the properties of manifolds in space-time that remain invariant under
metric-conserving transformations. For the case of Euclidean spaces, those man-
ifolds are evidently given by spheres characterized by a given radius r. Indeed,
any point on such a sphere can be transformed into any other point on the sphere
by means of a rotation of the coordinate system, and the distance of the associ-
ated vector from the origin remains invariant under such a transformation as it
corresponds to the square root of the scalar product of the vector with itself.

The invariance of the scalar product xx = (x0)2 − ~x2 of a four-vector x ≡
(x0, ~x) under Lorentz transformations can also be used to classify the invariant
manifolds within the Minkowski space. However, this scalar product is no longer
positive definite, but can take negative values or be zero for nonzero x 6= 0. These
three possible cases give rise to qualitatively different invariant manifolds.

Let us, for didactical purpose, begin with the special case xx = 0. We then
have (x0)2 = ~x2, i.e. x0 = |~x| or x0 = −|~x|. As shown in Fig. 1.1, these two
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different possibilities give rise to two different cones in space-time

K(+) = {x ∈M : xx = (x0)2 − ~x2 = 0 and x0 > 0} (1.41)

K(−) = {x ∈M : xx = (x0)2 − ~x2 = 0 and x0 < 0} (1.42)

which touch each other at the origin. They are named light cones as they contain
the trajectories of light particles in space and time. Indeed, to detect a photon
at time t = 0 at the origin of the spatial coordinate system, this photon has to
be launched on the past light cone defined by ct = −|~x|, since it travels with
the speed of light (provided there is no obstacle in the way). It can later on be
observed on the future light cone defined by ct = |~x|.

The inertial trajectories of particles with finite mass, which propagate with
velocities v that are lower than the speed of light, are contained in the interior
of the past and future light cones. To observe a moving massive particle at time
t = 0 at the spatial origin, it has to be launched in the past within the manifold

M(−)
r = {x ∈M : xx = (x0)2 − ~x2 = r2 and x0 < 0} (1.43)

for some r > 0. At some later time t > 0 in the future, this particle can then be
detected within the manifold

M(+)
r = {x ∈M : xx = (x0)2 − ~x2 = r2 and x0 > 0} , (1.44)

since we have the requirement that v = |~x|/t < c for such a massive particle. As

illustrated in Fig. 1.1, M(+)
r and M(−)

r represent two distinct hyperbolic (non-
compact) manifolds in space-time.

By means of a suitable Lorentz boost it is possible to transform into the
eigenframe of the particle in which the latter is permanently at rest. In this
eigenframe, the final time of detection is given by t′ = r/c, which is shorter than
the time of detection t =

√
r2 + ~x2/c in the original frame. As no inertial frame is

distinguished with respect to another one, we can state that the spatio-temporal
difference between the final detection event and the initial launching event of
the particle is of time-like nature, insofar as one can find a frame in which that
difference vector has only a temporal component.

Finally, hypothetical superluminal particles that travel with velocities larger
than the speed of light would arrive within the hyperbolic manifold

Rℓ = {x ∈M : xx = (x0)2 − ~x2 = −ℓ2} , (1.45)

for some ℓ > 0 after being launched at time t = 0 at the spatial origin. As
illustrated in Fig. 1.1, Rℓ represents, in contrast to M(+)

r and M(−)
r , a single

connected manifold in which the case distinction x0 > 0 or x0 < 0 is no longer
meaningful. Indeed, for any four-vector x ∈ Rℓ with x0 > 0 it is possible to
perform a Lorentz boost into a moving frame in which the temporal component
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of x can be negative or zero. Physically, this means that the difference vector
between the final detection event and the initial launching event of the considered
superluminal particle is not time-like but space-like, insofar as one can find an
inertial frame in which the temporal component of this difference is zero. This,
however, poses a fundamental problem from the point of view of causality: While
in the original frame the particle is detected well after being launched at the
spatial origin, one can perform proper Lorentz transformations into other inertial
frames in which the detection event takes place at the same time or even before the
launching event. As no inertial frame is distinguished with respect to the other
ones, it is therefore impossible to state from a conceptual point of view whether
the detection of the particle happens after the launching or the other way round.
Those two events are therefore considered to take place simultaneously.

In summary, we can conclude that the constant c, which we initially intro-
duced in order to represent the spatial and temporal components of an event with
the same units, now acquires a true physical meaning insofar as it represents the
ultimate speed limit for any kind of wave packet or particle propagation within
the universe. This fundamental property is an immediate consequence of the
Lorentz metric (1.25).



14 CHAPTER 1. SPECIAL RELATIVITY



Chapter 2

Maxwell’s equations

2.1 Vectors and tensors

From a physical point of view, the notion of a four-vector is not restricted to
the spatiotemporal coordinates e.g. of point particles or of the difference vectors
between two individual events. It may also apply to other physical objects and
quantities. A prominent example is the four-momentum p = pνeν ≡ (pν) of a
particle, which contains the momentum components pj of the particle with j =
1, 2, 3 as “spatial” coordinates and its energy E as “temporal” coordinate p0 =
E/c. While rotations of the spatial coordinate system do not affect the energy
E and the modulus of the momentum vector ~p = (p1, p2, p3), Lorentz boosts
generally give rise to a modification of |~p| which in turn induces a modification
of E according to the relativistic energy-momentum relation

E =
√

(mc2)2 + c2~p2 (2.1)

where m is the mass of the particle. This relation can also be expressed as
E2 − c2~p2 = (mc2)2 or as pνp

ν = (mc)2, which clearly indicates that the four-
momentum (pν) = (E/c, ~p) is a time-like vector.

More generally, a physical object a ≡ (aν) with four components a0, a1, a2, a3

will be named four-vector or Lorentz vector, or simply vector in the following, if
its components aν are transformed under Lorentz transformations according to
the same transformation laws (1.6) and (1.7) as the spatiotemporal coordinates
xν of any event x ≡ (xν). That is, if we subject our spatiotemporal basis (eν) to
a Lorentz transformation eν 7→ e′ν = D µ

ν eµ with D ≡ (D µ
ν ) ∈ G, we impose the

transformation law
aν 7→ a′ν = Dν

µa
µ (2.2)

for the components of the four-vector a. This is perfectly analogous to spatial
vectors ~a ≡ (a1, a2, a3) in the three-dimensional Euclidean space which are sup-
posed to transform under rotations of the spatial coordinate system in exactly
the same manner as any spatial position vector ~x ≡ (x2, x2, x3) e.g. of a particle.

15
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It is known in this context that pseudovectors can be distinguished from “or-
dinary” vectors by their behaviour under mirror transformations of the spatial
coordinate system: while an ordinary vector transforms as the position vector ~x
under such a mirror transformation, the transformation of pseudovectors involves
a change of sign in addition. This concept of pseudovectors can indeed be im-
ported to the Minkowski space: ã ≡ (ãν) is considered to be a pseudovector if its
components are transformed according to the law

ãν 7→ ã′ν = (detD)Dν
µã

µ (2.3)

under a general Lorentz transformation D ∈ G. This transformation law involves
a change of sign in the case of the case of Lorentz transformations D that include
spatial or temporal mirrors for which detD = −1, while it is equivalent to the
law (2.2) for vectors in the case of other Lorentz transformations with detD = 1.

Physical objects t ≡ (tνµ) with two indices ν, µ are named tensors of second

order (or, in that case, simply tensors) if they transform according to

tνµ 7→ t′νµ = Dν
αD

µ
βt

αβ (2.4)

under Lorentz transformationsD ∈ G. The metric tensor (gµν) is a prime example
in this context, which features the specific property that g′µν = gµν for Lorentz

transformations. Pseudotensors t̃ ≡ (t̃νµ), on the other hand, would satisfy the
transformation law

t̃νµ 7→ t̃′νµ = (detD)Dν
αD

µ
β t̃

αβ (2.5)

which again involves a change of sign in the presence of spatial or temporal mirrors
such that detD = −1. This concept can be generalized to tensors of Nth order
t ≡ (tν1,...,νN ) and pseudotensors of Nth order t̃ ≡ (t̃ν1,...,νN ) which respectively
satisfy the transformation laws

tν1,...,νN 7→ t′ν1,...,νN = Dν1
µ1
· · ·DνN

µN
tµ1,...,µN , (2.6)

t̃ν1,...,νN 7→ t̃′ν1,...,νN = (detD)Dν1
µ1
· · ·DνN

µN
t̃µ1,...,µN (2.7)

under Lorentz transformations D ∈ G.
Finally, Lorentz scalars are single-component physical objects that do not

change at all under Lorentz transformations. The mass m of a particle, for
instance, is a scalar object as it appears in Eq. (2.1). Pseudoscalars m̃ can also
be introduced. They satisfy the transformation law

m̃ 7→ m̃′ = (detD)m̃ (2.8)

under a Lorentz transformation D ∈ G. A prime example of a pseudoscalar in
the three-dimensional Euclidean space is the mixed product ~a ·(~b×~c) the modulus
of which corresponds to the volume contained within the parallelepiped spanned
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by the three vectors ~a,~b,~c and the sign of which is related to the (right-handed
or left-handed) orientation of these three vectors. Using the Levi-Civita symbol

ǫijk =







1 : (i, j, k) is an even permutation of (1, 2, 3)
−1 : (i, j, k) is an odd permutation of (1, 2, 3)
0 : otherwise

, (2.9)

we can express the mixed product through ~a · (~b × ~c) = ǫijka
ibkcl and thereby

directly infer its pseudoscalar property.
The notion of the Levi-Civita symbol can be generalized to the Minkowski

space giving rise to the Levi-Civita tensor

ǫν1ν2ν3ν4 =







1 : (ν1, ν2, ν3, ν4) is an even permutation of (0, 1, 2, 3)
−1 : (ν1, ν2, ν3, ν4) is an odd permutation of (0, 1, 2, 3)
0 : otherwise

(2.10)

which obviously is a pseudotensor of fourth order. This Levi-Civita tensor will be
used in order to define for each antisymmetric tensor (or pseudotensor) t ≡ (tνµ)
with tνµ = −tµν for all ν, µ ∈ {0, 1, 2, 3} the associated dual pseudotensor (or
dual tensor) t̃ ≡ (t̃νµ), namely through

t̃νµ =
1

2
ǫνµαβt

αβ , (2.11)

which also satisfies t̃νµ = −t̃µν for all ν, µ ∈ {0, 1, 2, 3}. We can straightforwardly
verify the duality relation tνµ = 1

2
ǫνµαβ t̃αβ . This notion of a dual tensor will

play a role in the subsequent section where we discuss the homogeneous Maxwell
equations.

We are now in a position to properly introduce scalar, vector, and tensor
fields (as well as pseudoscalar, pseudovector, and pseudotensor fields): They are
given by (single- or multicomponent) functions that are defined on the Minkowski
space M and that transform as scalars, vectors, or tensors (or as pseudoscalars,
pseudovectors, or pseudotensors) under Lorentz transformations. Assuming that
these functions are sufficiently often continously differentiable, we can calculate
their partial derivatives through the application of the operators

∂ν ≡
∂

∂xν
(2.12)

for ν = 0, 1, 2, 3. These operators form again a vectorial object

(∂ν) ≡ (∂0, ∂1, ∂2, ∂3) =

(

1

c

∂

∂t
, ~∇
)

with ~∇ ≡ ∂

∂~r
(2.13)

which transforms under Lorentz transformations D ∈ G in the same manner as
any other (covariant) Lorentz vector: ∂ν 7→ ∂′ν = D µ

ν ∂′µ. Hence, the gradient
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of a (complex or real) scalar field ϕ : M → C, x 7→ ϕ(x), which is defined
as ∂νϕ : M → C, x 7→ ∂νϕ(x), represents a vector field as its transformation
behaviour under Lorentz transformations is determined by the transformation
of the partial derivative operator (∂ν). On the other hand, the divergence of a
(complex or real) vector field aν : M→ C, x 7→ aν(x) is evaluated as ∂νa

ν(x) and
therefore corresponds to a scalar field, in a similar manner as the scalar product of
the vector field aν with any other Lorentz vector. The divergence of the gradient
of a scalar (or vector or tensor) field gives rise to the d’Alembert operator

∂ν∂
ν =

1

c2
∂2

∂t2
−∆ with ∆ ≡ ~∇ · ~∇ =

∂2

∂~r2
(2.14)

which clearly corresponds to a scalar object again. Here we make use of the
countervariant components

(∂ν) =

(

∂

∂xν

)

=

(

1

c

∂

∂t
,−~∇

)

(2.15)

of the partial derivative operator.
We are now in a position to reformulate in a more precise manner what we

meant by stating in Section 1.3 that physical laws must “have the same structural
form in each inertial frame” in order to comply with the principle of relativity: If
we assume that basic physical laws are generally expressed in terms of partial dif-
ferential equations (such as Maxwell’s equations or Schrödinger’s equation), then
those partial differential equations must exhibit a well-defined scalar, vectorial,
or tensorial (or pseudoscalar, pseudovectorial, or pseudotensorial) transformation
behaviour under Lorentz transformations. In other words, we must be able to
express those equations in a covariant manner using the relativistic index nota-
tions and the summation convention of Einstein. E.g. a wave equation of the
form

(

1

c2
∂2

∂t2
−∆

)

ϕ(~r, t) = 0 , (2.16)

which describes (scalar) waves that propagate with the speed of light c, perfectly
satisfies this requirement since we can reformulate it in a covariant manner as
∂ν∂

νϕ(x) = 0 using relativistic notations. On the other hand, a diffusion equation
of the form

(

∂

∂t
−D∆

)

ϕ(~r, t) = 0 (2.17)

is not in agreement with the principle of relativity (and there is no way to reformu-
late it in a coherent manner) since spatial and temporal derivatives appear with
different orders (first order for the temporal coordinate and second order for the
spatial coordinates). Indeed, this equation will have the form (2.17) only in very

specific inertial frames : Applying a Lorentz boost will mix spatial and temporal
coordinates according to Eqs. (1.32) and (1.34), which necessarily implies that
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Eq. (2.17) will appear differently in the new frame. The same argument holds for
Schrödinger’s equation — which means that the latter is not in agreement with
the principle of relativity!

2.2 The homogeneous Maxwell equations

In the framework of the theory of special relativity, the electromagnetic field is
described by an antisymmetric tensor field of second order F ≡ (Fµν) which is
defined through

(Fµν)(~r, t) =









0 E1(~r, t) E2(~r, t) E3(~r, t)
−E1(~r, t) 0 −B3(~r, t) B2(~r, t)
−E2(~r, t) B3(~r, t) 0 −B1(~r, t)
−E3(~r, t) −B2(~r, t) B1(~r, t) 0









(2.18)

and which shall be abbreviated as

(Fµν)(~r, t) ≡
(

~E(~r, t), ~B(~r, t)
)

(2.19)

in the following, where ~E ≡ (E1, E2, E3) is the electric and ~B ≡ (B1, B2, B3) the
magnetic field using cgs units (which are used throughout these lecture notes).
The fact that (Fµν) is a tensor and not a pseudotensor automatically implies that

the magnetic field ~B corresponds to a spatial pseudotensor whereas the electric
field ~E is an “ordinary” spatial vector. While F is defined in terms of its covariant
coordinates Fµν in Eq. (2.18), we can straightforwardly infer its countervariant
representation through

(F µν) =
(

gµαgνβFαβ

)

=









0 −E1 −E2 −E3

E1 0 −B3 B2

E2 B3 0 −B1

E3 −B2 B1 0









≡
(

−~E, ~B
)

(2.20)

as we would do it for any other tensor of second order.
Since F is an antisymmetric tensor with Fµν(x) = −Fνµ(x) for all µ, ν ∈

{0, 1, 2, 3} and all x ∈ M, we can, as we pointed out in the previous section 2.1,
define its associated dual pseudotensor according to

(F̃ µν) =

(

1

2
ǫµναβFαβ

)

=









0 −B1 −B2 −B3

B1 0 E3 −E2

B2 −E3 0 E1

B3 E2 −E1 0









≡
(

− ~B,−~E
)

. (2.21)

The homogeneous Maxwell equations are then written as

∂νF̃
µν(x) = 0 (2.22)
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in obvious agreement with the principle of relativity as Eq. (2.22) represents
a pseudovectorial object that exhibits a well-defined transformation behaviour
under Lorentz transformations. Evaluating ∂νF̃

0ν(x) = −∂lBl(x) as well as
∂νF̃

lν(x) = ∂0Bl(x) + ǫjkl∂jEk(x) for l = 1, 2, 3 where ǫjkl represents the Levi-
Civita symbol (2.9), and expressing the resulting equations in nonrelativistic
notation, we recover the standard formulation of the homogeneous Maxwell equa-
tions in cgs units:

~∇ · ~B(~r, t) = 0 , (2.23)

~∇× ~E(~r, t) = −1
c

∂

∂t
~B(~r, t) . (2.24)

As is well known from classical electrodynamics, Eqs. (2.23) and (2.24) al-

low for the introduction of scalar and vector potentials Φ and ~A owing to the
decomposition theorem for vector fields (which formally requires that ~E and ~B
fall off sufficiently rapidly for |~r| → ∞). In a similar manner, we can state that
Eq. (2.22) is satisfied if and only if we can write

Fµν(x) = ∂µAν(x)− ∂νAµ(x) (2.25)

for a suitable Lorentz vector field (Aν), which we shall write as

(Aν) (x) ≡
(

Φ(~r, t), ~A(~r, t)
)

(2.26)

and name as four-potential in the following. Indeed, if Eq. (2.25) holds, we can
straightforwardly evaluate

∂νF̃
µν =

1

2
ǫµναβ∂ν(∂αAβ − ∂βAα) =

1

2

(

ǫµναβ − ǫµνβα
)

∂ν∂αAβ = 0 (2.27)

using the antisymmetry of the Levi-Civita tensor (2.10). In nonrelativistic terms,
Eq. (2.25) is equivalent to the well-known relations

~E(~r, t) = −~∇Φ(~r, t)− 1

c

∂

∂t
~A(~r, t) , (2.28)

~B(~r, t) = ~∇× ~A(~r, t) . (2.29)

The choice of the four-potential (Aν) is not unique for a given electromagnetic

field (Fµν) = ( ~E, ~B). Indeed, applying the gauge transformation

Aν 7→ A′
ν = Aν + ∂νχ (2.30)

where χ : M→ R, x 7→ χ(x) is a Lorentz scalar field yields the same electromag-
netic field tensor

Fµν(x) = ∂µAν(x)− ∂νAµ(x) = ∂µA
′
ν(x)− ∂νA′

µ(x) (2.31)
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provided χ is twice continuously differentiable. We shall, in the following, impose
the Lorenz gauge, i.e., choose a four-potential that satisfies the relation

∂νA
ν(x) =

1

c

∂

∂t
Φ(~r, t) + ~∇ · ~A(~r, t) = 0 (2.32)

for all x ≡ (t, ~r).

2.3 The inhomogeneous Maxwell equations

The inhomogeneous Maxwell equations involve the charge and current densities
of the electrically charged matter. The latter can be represented by another
Lorentz vector field

(jν)(x) ≡
(

cρ(~r, t),~j(~r, t)
)

(2.33)

which will be named four-current in the following, and which has the electrical
charge density ρ(~r, t) at position ~r and time t as temporal component and the
electrical current density ~j(~r, t) at position ~r and time t as spatial components.
The conservation of the total charge can be expressed in terms of the continuity

equation

∂νj
ν(x) =

∂

∂t
ρ(~r, t) + ~∇ ·~j(~r, t) = 0 (2.34)

which is valid for all positions ~r and times t.
Using this four-current, we can now express the inhomogeneous Maxwell equa-

tions as

∂µF
µν(x) =

4π

c
jν(x) . (2.35)

Again, this equation is in agreement with the principle of relativity as it ex-
hibits a vectorial transformation behaviour under Lorentz transformations. In
nonrelativistic terms, Eq. (2.35) can be rewritten as

~∇ · ~E(~r, t) = 4πρ(~r, t) , (2.36)

~∇× ~B(~r, t) =
4π

c
~j(~r, t) +

1

c

∂

∂t
~E(~r, t) , (2.37)

which together with Eqs. (2.23) and (2.24) constitutes the well-known set of
Maxwell’s equations.

Expressing the electromagnetic field tensor (F µν) through the four-potential
(Aν) according to the relation (2.25) yields from Eq. (2.35) the equation

∂µ∂
µAν(x)− ∂µ∂νAµ(x) =

4π

c
jν(x) (2.38)

for the four-potential (Aν). This equation further simplifies if we impose the
Lorenz gauge (2.32): we then obtain that Aν satisfies an inhomogeneous wave
equation of the form

∂µ∂
µAν(x) =

4π

c
jν(x) . (2.39)
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2.4 Energy and momentum of the electromag-

netic field

As is well known from classical electrodynamics, the electromagnetic field contains
energy and momentum, which are conserved in the absence of charged matter.
Hence, in close analogy with the charge and current densities of matter, we can
again introduce four-currents formed by the densities and fluxes of the total
energy as well as of the three spatial components of the total momentum, each
of which satisfying a continuity equation of the form (2.34) in the absence of
charged matter. As the energy and the three components of the momentum vector
constitute a Lorentz vector, too, we thereby obtain a tensorial object of second
order, which is generally referred to as energy-momentum tensor T ≡ (T µν). For
the electromagnetic field its components T µν : M→ R, x 7→ T µν(x) are given by

T µν(x) =
1

4π

(

1

4
gµνFαβ(x)F

αβ(x)− gαβF µα(x)F νβ(x)

)

= T νµ(x) . (2.40)

Evaluating Fαβ(x)F
αβ(x) = 2( ~B2(~r, t)− ~E2(~r, t)), we specifically obtain

T 00(x) =
1

8π

(

~E2(~r, t) + ~B2(~r, t)
)

(2.41)

for the energy density and

(

cT 0l(x)
)

=
c

4π

(

~E(~r, t)× ~B(~r, t)
)

= ~S(~r, t) (2.42)

for the flux or current density of the energy of the electromagnetic field, which is
also known as Poynting vector ~S. The momentum density is given by

(

1

c
T l0(x)

)

=
1

4πc

(

~E(~r, t)× ~B(~r, t)
)

(2.43)

and its associated flux is described by Maxwell’s stress tensor

T ij(x) =
1

4π

(

1

2

(

~E2(~r, t) + ~B2(~r, t)
)

δij − Ei(~r, t)Ej(~r, t)− Bi(~r, t)Bj(~r, t)

)

.

(2.44)
By means of the homogeneous and inhomogeneous Maxwell equations (2.22)

and (2.35) we can derive

∂νT
µν(x) = −1

c
F µν(x)jν(x) (2.45)

where jν (ν = 0, 1, 2, 3) are the (covariant) components of the four-current (2.33)
describing the charged matter. Conservation of energy and momentum of the
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electromagnetic field is therefore granted in the absence of matter, while the
presence of charged particles will give rise to an exchange of energy and momen-
tum between the electromagnetic field and the particles, which is described by
Eq. (2.45). Specifically we have

1

c
F 0ν(x)jν(x) =

1

c
~E(~r, t) ·~j(~r, t) (2.46)

as gain of energy density (i.e. as power density) of the matter in the presence
of the electromagnetic field and, due to conservation of energy, also as loss of
energy density of the electromagnetic field due to the interaction with matter.
Eq. (2.46) expresses the fact that positively charged particles will be accelerated
and thereby gain kinetic energy when moving in the direction of the local electric
field ~E(~r, t). The gain of momentum density of charged matter in the presence
of the electromagnetic field is given by

(

1

c
F lν(x)jν(x)

)

= ρ(~r, t) ~E(~r, t) +
1

c
~j(~r, t)× ~B(~r, t) , (2.47)

which expresses the Lorentz force acting on the charged matter.

Problem

2.1 Show the validity of Eq. (2.45).
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Chapter 3

Nonrelativistic quantum
mechanics

3.1 Classical mechanics

In the framework of the Hamiltonian formalism, a classical point particle is de-
scribed by its position ~r ≡ ~r(t) ∈ R3 and by its momentum ~p ≡ ~p(t) ∈ R3 which
evolve with time according to Hamilton’s equations of motion

d~r

dt
(t) =

∂H

∂~p
[~r(t), ~p(t), t] =

1

m
~p(t) , (3.1)

d~p

dt
(t) = −∂H

∂~r
[~r(t), ~p(t), t] = − ∂

∂~r
V [~r(t), t] . (3.2)

Here,

H(~r, ~p) =
~p2

2m
+ V (~r, t) (3.3)

is the classical Hamiltonian, m is the mass of the particle, and V (~r, t) denotes its
potential energy at the position ~r at time t. Differentiating Eq. (3.1) with respect
to time and combining it with Eq. (3.2) yields Newton’s second law

m
d2~r

dt2
(t) = − ∂

∂~r
V [~r(t), t] (3.4)

for the time evolution of the position of the particle.
Let us consider, as an example, a three-dimensional anisotropic harmonic

oscillator characterized by the oscillation frequencies ω1, ω2, ω3 along the spatial
axes ~e1, ~e2, ~e3, respectively. The potential energy of the particle is written as

V (~r, t) =
1

2
m

3
∑

l=1

ω2
l r

2
l ≡ V (~r) (3.5)

25
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and we obtain the Newtonian equations

d2rl
dt2

(t) = −ω2
l rl(t) (3.6)

for the time evolution of the spatial coordinates of the particle (l = 1, 2, 3). These
equations are generally solved as

rl(t) = αle
−iωlt + α∗

l e
iωlt (3.7)

for some complex amplitudes αl ∈ C. Evaluating the momentum coordinates of
the particle according to Eq. (3.1) as

pl(t) = −imωl

(

αle
−iωlt − α∗

l e
iωlt
)

, (3.8)

we then obtain its total energy as

H [~r(t), ~p(t)] =

3
∑

l=1

2mω2
l |αl|2 (3.9)

which is a constant of motion.

3.2 The Schrödinger equation

In contrast to classical mechanics, it is impossible to simultaneously define with
certitude the precise position and momentum of a quantum point particle. This
fact is reflected by the presence of fundamental experimental limits in the imaging
of a quantum particle using, e.g., a focused laser beam the spatial resolution of
which would be given by the chosen wavelength. Indeed, the more we lower this
wavelength in order to increase the spatial resolution, the higher will be the recoil
that the particle receives when being hit by a laser photon, which enhances the
uncertainy concerning the precise momentum of the particle. We therefore give
up the attempt to maintain the notions of precise positions and momenta in the
context of a quantum particles and accept the fact that such a particle is rather to
be described by finite probability distributions ρ(~r, t) and ρ̃(~p, t) that at the time
t the particle is at the position ~r and moves with the momentum ~p, respectively.

The essential assumption that underlies the theory of quantum mechanics is
that these two probability distributions are not independent of each other. They
are linked by a complex wavefunction ψ : R4 → R, (~r, t) 7→ ψ(~r, t) such that
ρ(~r, t) = |ψ(~r, t)|2 is the probability density to find the particle at the position ~r
at time t and ρ̃(~p, t) = |ψ̃(~p, t)|2 with

ψ̃(~p, t) =
1

√
2π~

3

∫

d3r ψ(~r, t)e−
i

~
~p·~r (3.10)
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is the probability density to detect that the particle moves with the momentum
~p at time t. Equation (3.10) essentially corresponds to the Fourier transform of
ψ which is inverted as

ψ(~r, t) =
1

√
2π~

3

∫

d3p ψ̃(~p, t)e
i

~
~p·~r , (3.11)

where we introduce the reduced Planck constant ~ = h/(2π) ≃ 1.055 · 10−34 Js
as basic unit for action. By definition we have

1 =

∫

d3r|ψ(~r, t)|2 =
∫

d3p|ψ̃(~p, t)|2 (3.12)

for the total probability to detect the particle, where the second equality in
Eq. (3.12) is granted to hold by construction of the Fourier transform (3.10) and
its inversion (3.11) owing to Parseval’s theorem.

The impossibility to precisely pinpoint the position and the momentum of a
particle emerges now as a straightforward mathematical consequence of the rela-
tion between the corresponding probability distributions through Eqs. (3.10) and
(3.11). It essentially results from the fact that the Fourier transform of a rather
narrowly localized wavefunction ψ in position space yields a rather broad func-
tion ψ̃ in momentum space, and vice versa, where the characteristic scale that
relates the notions of “narrow” and “broad” with each other is provided by the
reduced Planck constant ~. More precisely, one can evaluate that the product of
the standard deviations associated with the mean position and momentum coor-
dinates of a particle along the axis ~el (l = 1, 2, 3) verifies Heisenberg’s uncertainty
principle

∆rl∆pl ≥
~

2
(3.13)

where the lower limit, yielding an equality sign in Eq. (3.13), is attained for the
(optimal) case of a Gaussian wavefunction in position and momentum space.

While it would indeed be straightforward to calculate the mean values of
arbitrary functions of the position or the momentum of a particle according to

〈f〉t =

∫

d3r f(~r)|ψ(~r, t)|2 , (3.14)

〈g〉t =

∫

d3p g(~p)|ψ̃(~p, t)|2 , (3.15)

respectively, with f : R3 → R, ~r 7→ f(~r) and g : R3 → R, ~p 7→ g(~p), it turns
out to more convenient to privilege only one of the two representations of the
wavefunction, namely the one in position space, and to evaluate mean values of
functions g defined in momentum space also by using this position representation
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of the wavefunction. This yields for the mean momentum of the particle

〈~p〉t =

∫

d3p|ψ̃(~p, t)|2~p (3.16)

=
1

(2π~)3

∫

d3p

∫

d3r

∫

d3r′ψ∗(~r, t)e
i

~
~p·~rψ(~r′, t)e−

i

~
~p·~r′~p (3.17)

=

∫

d3r ψ∗(~r, t)
~

i
~∇ψ(~r, t) (3.18)

= −
∫

d3r ψ(~r, t)
~

i
~∇ψ∗(~r, t) (3.19)

with ~∇ ≡ ∂
∂~r

where we use exp(∓ i
~
~p · ~r)~p = ±i~~∇ exp(∓ i

~
~p · ~r) and integrate by

parts for deriving Eq. (3.18) and Eq. (3.19) from Eq. (3.17), respectively. We
also make use of the fact that the integral

1

(2π~)3

∫

d3p e
i

~
~p·(~r−~r′) = δ(~r − ~r′) (3.20)

is a valid representation of Dirac’s delta distribution in the space of square in-
tegrable test functions ψ : R3 7→ C, ~r 7→ ψ(~r) that satisfy the normalization
condition (3.12).

While Eq. (3.18) is most commonly used to represent the mean value of the
momentum of a particle, it is instructive to form the arithmetic average of the
equivalent expressions (3.18) and (3.19) yielding

〈~p〉t =
∫

d3r
~

2i

[

ψ∗(~r, t)~∇ψ(~r, t)− ψ(~r, t)~∇ψ∗(~r, t)
]

. (3.21)

In contrast to Eqs. (3.18) and (3.19), the integrand of this latter expression for
the mean momentum is real and can therefore be interpreted as some sort of
“momentum density” of the particle, providing the local contribution from the
position ~r for the evaluation of 〈~p〉t. Using according to Eq. (3.1) the (nonrel-
ativistic) relation ~p = m~v between the momentum ~p and the velocity ~v of the
particle allows us then to define the density of the probability current or the flux
of the probability at the position ~r according to

~j(~r, t) =
~

2im

[

ψ∗(~r, t)~∇ψ(~r, t)− ψ(~r, t)~∇ψ∗(~r, t)
]

.

=
1

m
Re

[

ψ∗(~r, t)
~

i
~∇ψ(~r, t)

]

(3.22)

As already pointed out in Section 2.3 in the context of charged matter, the
spatial probability density ρ and its associated flux ~j have to satisfy a continuity
equation of the form (2.34) in order to grant the conservation of the total proba-
bility according to Eq. (3.12). Using ρ(~r, t) = |ψ(~r, t)|2 and the expression (3.22)
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for the flux yields the continuity equation

0 =
∂

∂t
|ψ(~r, t)|2 + ~∇ ·~j(~r, t) (3.23)

= 2Re

{

ψ∗(~r, t)

[

∂

∂t
ψ(~r, t) +

~

2mi
∆ψ(~r, t)

]}

(3.24)

with ∆ ≡ ~∇· ~∇. It is straightforward to verify that this latter equation is satisfied
if and only if the expression within the brackets [. . .] yields ψ(~r, t) multiplied with
a purely imaginary prefactor that may depend on position and time. Denoting
this prefactor as −iV (~r, t)/~ for some real function V : R4 → R, (~r, t) 7→ V (~r, t)
finally yields the celebrated Schrödinger equation

i~
∂

∂t
ψ(~r, t) = − ~2

2m
∆ψ(~r, t) + V (~r, t)ψ(~r, t) . (3.25)

It is instructive to multiply Eq. (3.25) with ψ∗(~r, t) and integrate the resulting
equation over the entire space. Using Eq. (3.11) this yields

∫

d3r ψ∗(~r, t)

(

− ~2

2m

)

∆ψ(~r, t) =

∫

d3p
~p2

2m
|ψ̃(~p, t)|2 (3.26)

for the first term on the right-hand side of Eq. (3.25), which we immediately
recognize as the mean value of the (nonrelativistic) kinetic energy of the particle.
It is therefore straightforward to interpret, in close analogy with the classical
Hamiltonian (3.3), the expression

∫

d3r V (~r, t)|ψ(~r, t)|2 that results from the sec-
ond term on the right-hand side of Eq. (3.25) as mean value of the potential

energy of the particle and the expression

E(t) =

∫

d3r ψ∗(~r, t)i~
∂

∂t
ψ(~r, t) (3.27)

as the mean value of its total energy. We thereby identify V (~r, t) as the external
potential energy that the particle is subject to at position ~r and time t, in an
identical manner as for the classical Hamiltonian (3.3).

While its validity has been verified in an overwhelming number of experiments
in the nonrelativistic context, the Schrödinger equation (3.25) is not in agreement
with the principle of relativity. This is straightforwardly seen by reformulating
Eq. (3.25) as

i~c∂0ψ(~r, t) =
~2

2m
∂l∂

lψ(~r, t) + V (~r, t)ψ(~r, t) , (3.28)

using according to Eq. (2.12) the relativistic notation ∂0 ≡ 1
c
∂
∂t

and ∂l ≡ ∂
∂xl with

l = 1, 2, 3. Clearly, this equation is not invariant under Lorentz transformations
as it does not correspond to any scalar, vectorial, or tensorial object with a well-
defined transformation behaviour in the Minkowski space. It would therefore
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acquire the form (3.28) only in one specific reference frame, what would then
distinguish this frame with respect to other possible reference frames.

Obviously, the nonrelativistic association ~p = m~v between the momentum ~p
and the velocity ~v of the particle, which we used in order to infer the expres-
sion (3.22) for the probability flux, is at the origin of the disagreement of the
Schrödinger equation with the theory of relativity. This association is, according
to Eq. (3.1), derived from the nonrelativistic expression E = p2/(2m) of the ki-
netic energy of the particle, which is approximately obtained from the relativistic
energy-momentum relation (2.1) according to

E =
√

(mc2)2 + c2p2 ≃ mc2 +
p2

2m
− p4

8m3c2
+O

(

1

c4

)

(3.29)

in the formal limit of an infinitely large speed of light c (or, more precisely, for
p≪ mc). For very large momenta p & mc we would rather derive the expression

v =
1

m

∂E

∂p
=

p/m
√

1 + [p/(mc)]2
=

c
√

1 + (mc/p)2
< c , (3.30)

which, however, cannot be easily exploited to generalize the above line of argu-
ments to the relativistic domain.

3.3 Interaction with an electromagnetic field

While the Schrödinger equation is not in agreement with the principle of relativity,
the quantum theory that we developed in the previous section does nevertheless
exhibit covariant features that can be reformulated in relativistic terms. This
is particularly the case for the expectation value of the four-momentum (pν) =
(E/c, ~p) which is determined with respect to the wavefunction ψ as

〈pν〉t =
∫

d3r ψ∗(x)i~∂νψ(x) (3.31)

according to Eqs. (3.18) and (3.27), where we identify x ≡ (ct, ~r) and (∂ν) ≡
(1
c
∂
∂t
,−~∇).
Similarly, we can formulate in an analogous covariant manner the interaction

of a charged quantum particle with an electromagnetic field. The latter is de-
scribed by the four-potential (Aν) = (Φ, ~A) where Φ(~r, t) and ~A(~r, t) respectively
represent the scalar and vector potential of the field at the position ~r at time t.
While Φ simply provides a contribution to the external potential energy of the
particle — or, more precisely, essentially constitutes the potential energy V (~r, t)
after being multiplied with the charge of the particle — the vector potential al-
ters the nonrelativistic relation between its velocity ~v and its momentum ~p such
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that we have to distinguish between the canonical momentum ~p and the kinetic

momentum ~π = m~v of the particle.
More precisely, the classical Hamiltonian of a point particle with the charge

q reads

H(~r, ~p, t) =
1

2m

[

~p− q

c
~A(~r, t)

]2

+ qΦ(~r, t) . (3.32)

in the presence of an electromagnetic field. It gives rise to the classical equations
of motion

d~r

dt
(t) =

∂H

∂~p
[~r(t), ~p(t), t] =

1

m
~π(t) , (3.33)

d~p

dt
(t) = −∂H

∂~r
[~r(t), ~p(t), t] = −q∂Φ

∂~r
[~r(t), t] +

q

c

drl
dt

(t)
∂Al

∂~r
[~r(t), t] (3.34)

where we have introduced the kinetic momentum as

~π(t) = ~p(t)− q

c
~A [~r(t), t] . (3.35)

Calculating its time derivative as

d~π

dt
(t) =

d~p

dt
(t)− q

c

{

∂ ~A

∂rl
[~r(t), t]

drl
dt

(t) +
∂ ~A

∂t
[~r(t), t]

}

, (3.36)

where we implicitly sum over l = 1, 2, 3 in this equation [and also in Eq. (3.34)],
and using the relation

drl
dt

(t)

[

∂Al

∂~r
(~r, t)− ∂ ~A

∂rl
(~r, t)

]

=
d~r

dt
(t)×

[

~∇× ~A(~r, t)
]

, (3.37)

we finally obtain the Newtonian equation

m
d2~r

dt2
(t) = q ~E [~r(t), t] +

q

c

d~r

dt
(t)× ~B [~r(t), t] (3.38)

describing the Lorentz force on a charged particle in the presence of the electric
field ~E and the magnetic field ~B which are defined through Eqs. (2.28) and (2.29),
respectively.

While we still maintain the basic postulate that the probability distributions
of a quantum particle in position and momentum space are determined by a
complex wavefunction ψ as described in Section 3.2, we now have to modify
the definition (3.22) of the probability flux of the particle, which is, in view of
Eq. (3.33), now given by the “density of kinetic momentum” divided by the mass
m of the particle. This yields the modified expression

~J(~r, t) =
1

m
Re

[

ψ∗(~r, t)

(

~

i
~∇− q

c
~A(~r, t)

)

ψ(~r, t)

]

(3.39)
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for the probability flux in the presence of the electromagnetic field. Following the
subsequent steps of argumentation that we developed in Section 3.2, where we set
this time V (~r, t) = qΦ(~r, t)+q2[ ~A(~r, t)]2/(2mc2) for the real function V : R4 → R

to be freely choosen, we then obtain the modified Schrödinger equation

i~
∂

∂t
ψ(~r, t) =

1

2m

[

~

i
~∇− q

c
~A(~r, t)

]2

ψ(~r, t) + qΦ(~r, t)ψ(~r, t) . (3.40)

We note that Eq. (3.40) can formally be obtained from the ordinary Schrödinger
equation (3.25) by setting V ≡ 0 and by replacing

∂

∂t
7→ ∂

∂t
+
iq

~
Φ(~r, t) , (3.41)

~∇ 7→ ~∇− iq

~c
~A(~r, t) , (3.42)

in Eq. (3.25). This replacement, which is also referred to as minimal coupling of
the particle to the electromagnetic field, can be rewritten in a covariant manner
according to

∂ν 7→ ∂ν +
iq

~c
Aν(x) (3.43)

and would therefore be in agreement with the principle of relativity.
It may appear strange that the electromagnetic field is represented in the

Schrödinger equation (3.40) by the associated scalar and vector potentials the
choice of which is not unique as was pointed out in Section 2.2. Indeed, it seems
that a gauge transformation according to Eq. (2.30), which does not change the
electric and magnetic fields (and hence does not modify the Newtonian equa-
tions of motion (3.37) either), does alter the time evolution of the wavefunction
when being incorporated in the Schrödinger equation (3.40). The solution to
this problem is that the wavefunction ψ is transformed as well under such a
gauge transformation. More precisely, the gauge transformation Aν 7→ A′

ν of the
four-potential with

A′
ν(x) = Aν(x) + ∂νχ(x) (3.44)

for a given (twice continuously differentiable) scalar field χ has to be accompanied
by an associated gauge transformation ψ 7→ ψ′ of the wavefunction with

ψ′(~r, t) = ψ(~r, t) exp

[

− iq
~c
χ(~r, t)

]

. (3.45)

It is then straightforward to show that the new wavefunction ψ′ verifies the
modified Schrödinger equation

i~
∂

∂t
ψ′(~r, t) =

1

2m

[

~

i
~∇− q

c
~A′(~r, t)

]2

ψ′(~r, t) + qΦ′(~r, t)ψ′(~r, t) (3.46)
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containing the transformed four-potential A′
ν , provided the old wavefunction ψ

verified the original Schrödinger equation (3.40).
From a more fundamental point of view, the invariance of the Schrödinger

equation with respect to the combined gauge transformation of ψ and Aν ac-
cording to Eqs. (3.44) and (3.45) reflects the request that the phase of the wave-
function should not carry any physical information. More specifically, assuming,
for the sake of simplicity, that the wavefunction ψ(~r, t) ∈ R is real at time t a
given position ~r in some physical laboratory should not have any impact onto
the definition of the phase of the wavefunction in other nearby or distant labo-
ratories. We conversely note that this freedom in the choice of the local phase
can be imposed if and only if the wavefunction is coupled to an electromagnetic
field according to Eq. (3.40). The presence of the latter can then be seen as a
necessity to grant such a local gauge invariance of the wavefunction, which is the
essence of gauge theory.

3.4 The Heisenberg picture

Heisenberg undertook a different approach in order to explain the uncertainty
principle (3.13). He suggested that position and momentum ought to be non-
commuting objects, such as matrices, instead of ordinary numbers. This point of
view can indeed be reconciled with the Schrödinger picture of quantum mechanics
that we developed in Section 3.2. We note for this purpose that by virtue of
Eq. (3.12) the wavefunction ψ describing the state of the particle represents a
vector of the Hilbert space

H =

{

ψ : R3 → C,

∫

|ψ(~r)|2d3r <∞
}

(3.47)

of square-integrable (L2) functions defined on the three-dimensional space. The
position and momentum of the particle as well as any other physical observable
A ≡ A(~p, ~q) in relation with the particle can then be represented by a linear
operator Â : H → H, ψ 7→ Âψ that acts on this Hilbert space. Its mean or
expecation value with respect to the state ψ of the particle is then given by the
expression 〈Â〉 = 〈ψ|Â|ψ〉, where we define in a more general manner the matrix

element of the operator Â with respect to the states ψ ∈ H and φ ∈ H by

〈φ|Â|ψ〉 =
∫

d3rφ∗(~r)Âψ(~r) . (3.48)

Physically relevant operators ought to be hermitian, i.e. identical to their adjoint
Â† with respect to the standard scalar product 〈φ|ψ〉 =

∫

d3rφ∗(~r)ψ(~r), such

that they satisfy 〈φ|Â|ψ〉 = 〈ψ|Â|φ〉∗ for all ψ, φ ∈ H and exhibit purely real
expectation values 〈Â〉 ∈ R.
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Most naturally, the position operator ~̂r of the particle acts as
(

~̂rψ
)

(~r) = ~rψ(~r) (3.49)

on the wavefunction ψ and is straightforwardly shown to be hermitian, while we
infer from Eq. (3.18) the definition

(

~̂pψ
)

(~r) =
~

i

∂

∂~r
ψ(~r) (3.50)

of the momentum operator ~̂p the hermiticity of which is demonstrated through
integration by parts as done in Eq. (3.19). In perfect accordance with the point
of view of Heisenberg, the position and momentum operators do not commute
with each other as we evaluate

(p̂l′ r̂lψ) (~r) =
~

i

∂

∂rl′
[rlψ(~r)] =

~

i

[

rl
∂

∂rl′
ψ(~r) + δll′ψ(~r)

]

= (r̂lp̂l′ − i~δll′)ψ(~r)
(3.51)

for all ψ ∈ H and all l, l′ = 1, 2, 3 and hence obtain

[r̂l, p̂l′] ≡ r̂lp̂l′ − p̂l′ r̂l = i~δll′ (3.52)

for the commutator of the operators r̂l and p̂l′. Arbitrary functions f ≡ f(~r) and
g ≡ g(~p) of the position or momentum of the particle are then represented by

the hermitian operators f̂ = f(~̂r) and ĝ = g(~̂p), respectively, whose expectation
values with respect to the state ψ are then indeed given by the expressions (3.14)
and (3.15). In particular, the total energy (3.3) of the particle is represented by
the Hamiltonian operator

Ĥ =
~̂p 2

2m
+ V (~̂r, t) ≡ Ĥ(t) , (3.53)

which allows us to rewrite the Schrödinger equation (3.25) as

i~
∂

∂t
ψ(~r, t) =

(

Ĥ(t)ψ
)

(~r, t) . (3.54)

We assume for the following that the potential energy V (~r, t) ≡ V (~r) is not
explicitly dependent on time, which implies that the definition of the Hamiltonian
Ĥ is time-independent. We can then formally integrate Eq. (3.54) yielding

ψ(~r, t) =
[

Û(t)ψ0

]

(~r) , (3.55)

where we define by ψ0(~r) = ψ(~r, 0) the initial state of the particle at the time
t = 0 and by

Û(t) = exp

(

−it
~
Ĥ

)

=

∞
∑

k=0

1

k!

(−it
~

)k

Ĥk =
[

Û †(t)
]−1

(3.56)
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the unitary time evolution operator or propagator of the system. It is then
straightforward to show that the time-dependent expectation value of the op-
erator Â with respect to the state ψ = Û(t)ψ0 can be expressed as

〈Â〉t = 〈Û(t)ψ0|Â|Û(t)ψ0〉 = 〈ψ0|Û †(t)ÂÛ(t)|ψ0〉 = 〈ψ0|Â(t)|ψ0〉 (3.57)

where we use 〈φ|Û(t)|ψ〉 = 〈ψ|Û †(t)|φ〉∗ for all ψ, φ ∈ H and define the time-

dependent operator

Â(t) ≡ Û †(t)ÂÛ(t) = exp

(

it

~
Ĥ

)

Â exp

(

−it
~
Ĥ

)

. (3.58)

The essence of the Heisenberg picture is to claim that the state of the system
is given by a time-independent wavefunction ψ = ψ0 ∈ H while any operator
Â representing a physical observable evolves with time according to Eq. (3.58).
Deriving this latter equation (3.58) with respect to time yields the Heisenberg

equation of motion

d

dt
Â(t) =

i

~
Ĥ exp

(

it

~
Ĥ

)

Â exp

(

−it
~
Ĥ

)

− exp

(

it

~
Ĥ

)

Â exp

(

−it
~
Ĥ

)

i

~
Ĥ

=
i

~
[Ĥ, Â(t)] (3.59)

describing the time evolution of the operator Â. It is straightforward to show that
Â(t)B̂(t) = (ÂB̂)(t) for any pair of operators Â and B̂, and that any operator
Â that commutes with the Hamiltonian, [Ĥ, Â] = 0, is independent of time,
Â(t) ≡ Â, in the Heisenberg representation. This applies, in particular, to the
Hamiltonian Ĥ itself, which we can now express as

Ĥ =
[~̂p(t)]2

2m
+ V [~̂r(t)] (3.60)

in the Heisenberg representation. It also applies to the commutator (3.52) of the
position and momentum operators which is therefore evaluated as

[r̂l(t), p̂l′(t)] = [r̂l(0), p̂l′(0)] = i~δll′ (3.61)

for any time t. Using Eqs. (3.60) and (3.61) we thereby obtain the Heisenberg
equations (3.59) for the position and momentum operators as

d

dt
~̂r(t) =

i

~
[Ĥ, ~̂r(t)] =

1

m
~̂p(t) , (3.62)

d

dt
~̂p(t) =

i

~
[Ĥ, ~̂p(t)] = −~∇V [~̂r(t)] . (3.63)

We note that these equations are perfectly analogous to the classical equations
of motion (3.1) and (3.2) describing the time evolution of the position and mo-
mentum coordinates of a classical particle, and can formally be generated from
the latter by putting operator hats on top of ~r and ~p.
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3.5 The harmonic oscillator

Let us now again consider the specific case of the three-dimensional anisotropic
harmonic oscillator that is characterized by the potential energy (3.5). The
Heisenberg equations (3.62) and (3.63) are then written as

d

dt
r̂l(t) =

1

m
p̂l(t) , (3.64)

d

dt
p̂l(t) = −mω2

l r̂l(t) (3.65)

for this particular system (with l = 1, 2, 3), which yields

d2

dt2
r̂l(t) = −ω2

l r̂l(t) (3.66)

as quantum analog of the classical Newtonian equations (3.6). In perfect analogy
with the classical harmonic oscillator [see Eq. (3.7)], these equations would gen-
erally be solved as r̂l(t) = α̂le

−iωlt + α̂†
l e

iωt for some operators α̂l. It is, however,

more convenient to factor out
√

~/(2mωl) from this expression, such that we

define the time-dependent operators âl(t) =
√

2mωl/~α̂le
−iωlt and consequently

write the general solution of the Heisenberg equations (3.64) and (3.65) as

r̂l(t) =

√

~

2mωl

[

âl(t) + âl(t)
†
]

, (3.67)

p̂l(t) = i

√

~mωl

2

[

âl(t)
† − âl(t)

]

. (3.68)

These equations can be solved for âl yielding

âl(t) =

√

mωl

2~

[

r̂l(t) +
i

mωl
p̂l(t)

]

. (3.69)

Using Eq. (3.61), we straightforwardly evaluate from this expression (3.69) and
its adjoint the commutation rules

[âl(t), â
†
l′(t)] = δll′ (3.70)

as well as [âl(t), âl′(t)] = 0 = [â†l (t), â
†
l′(t)] for all l, l

′ = 1, 2, 3. The Hamiltonian
of this system can then be expressed as

Ĥ =
1

2

3
∑

l=1

(

p̂2l
m

+mω2
l r̂

2
l

)

=

3
∑

l=1

1

2
~ωl

(

âlâ
†
l + â†l âl

)

(3.71)

=

3
∑

l=1

~ωl

(

â†l âl +
1

2

)

, (3.72)
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where we used the commutator (3.70) to obtain the expression (3.72) from Eq. (3.71).
Deriving from this expression the Heisenberg equation for the operator âl accord-
ing to Eq. (3.59) yields

d

dt
âl(t) =

i

~
[Ĥ, âl(t)] = −iωlâl(t) (3.73)

using again the commutator (3.70). This equation is straightforwardly solved as
âl(t) = e−iωltâl(0), in perfect agreement with the general solution of the Heisen-
berg equations (3.64) and (3.65) for the position and momentum operators.

âl and â
†
l are named ladder operators, owing to the specific spectral properties

that exhibits the harmonic oscillator Hamiltonian (3.72). Indeed, assuming that
|n〉 is an eigenstate of the (hermitian) operator â†l âl, i.e. we have

â†l âl|n〉 = n|n〉 (3.74)

for some (real) eigenvalue n ∈ R, we can show through

â†l âlâ
†
l |n〉 = â†l â

†
l âl|n〉+ â†l |n〉 = (n + 1)â†l |n〉 , (3.75)

â†l âlâl|n〉 = âlâ
†
l âl|n〉 − âl|n〉 = (n− 1)âl|n〉 (3.76)

[where we use again the commutator (3.70)] that â†l |n〉 and âl|n〉 are eigenstates

of â†l âl, too, for the eigenvalues (n + 1) and (n − 1), respectively. Realizing

furthermore that n = 〈n|â†l âl|n〉 = 〈âln|âln〉 ≥ 0, we can infer that n ∈ N0 =
{0, 1, 2, . . .} has to be a natural number and that we have âl|0〉 = 0.

The spectrum of the Hamiltonian (3.72) is therefore discrete and bounded
from below. Its normalized eigenstates can formally be written as

|n1, n2, n3〉 =
[

3
∏

l=1

1√
nl!

(

â†l

)nl

]

|0, 0, 0〉 (3.77)

for n1, n2, n3 ∈ N0, where we denote by |0, 0, 0〉 the normalized ground state of
the Hamiltonian. The associated eigenvalues read

En1,n2,n3
=

3
∑

l=1

~ωl

(

nl +
1

2

)

. (3.78)

We note that these properties can be inferred for any Hamiltonian that can be
written in the form (3.72) where âl and â

†
l satisfy the commutation relation (3.70),

independently of the physical context under consideration.

Problem

3.1 Show that the gauge-transformed wavefunction (3.45) verifies the modified
Schrödinger equation (3.46) if the original wavefunction evolves according
to Eq. (3.40).
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Chapter 4

The quantization of fields

4.1 Classical waves

We consider a field φ : R4 → R, (~r, t) 7→ φ(~r, t) that satisfies the wave equation

(

1

c̃2
∂2

∂t2
−∆

)

φ(~r, t) = 0 (4.1)

where c̃ is some speed constant. This equation would describe a wave that prop-
agates in three-dimensional space with the speed c̃. The field φ(~r, t) could, for
instance, represent the local variation of the density of molecules with respect to
its average value at the position ~r and the time t in order to model sound waves
in the air (in which case we would have c̃ ≃ 330 m/s).

Provided that φ is integrable (which implies |φ(~r, t)| → 0 for |~r| → ∞), we can
solve Eq. (4.1) by performing a Fourier transform. This amounts to introducing

another field φ̃ : R4 → C, (~k, t) 7→ φ̃(~k, t) which is complex-valued and defined by
the relation

φ̃(~k, t) =
1
√
2π

3

∫

φ(~r, t)e−i~k·~rd3r . (4.2)

Subjecting Eq. (4.1) to this Fourier transform yields the now ordinary differential
equation

(

1

c̃2
∂2

∂t2
+ ~k2

)

φ̃(~k, t) = 0 . (4.3)

The general solution of this latter equation is straightforwardly written as

φ̃(~k, t) = α~ke
−iωkt + β~ke

iωkt (4.4)

for some complex coefficients α~k, β~k ∈ C where we define ωk = c̃|~k|. Reverting
the Fourier transform (4.2) yields then the general solution of the wave equation
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(4.1) according to

φ(~r, t) =
1
√
2π

3

∫

d3kφ̃(~k, t)ei
~k·~r (4.5)

=
1
√
2π

3

∫

d3k
(

α~ke
i(~k·~r−ωkt) + β

−~ke
−i(~k·~r−ωkt)

)

, (4.6)

where we have to require β
−~k = α∗

~k
for all ~k ∈ R3 in order to obtain a real-valued

wave field.
For technical reasons, we shall, in the following, also consider the solution of

wave equations of the above type (4.1) not within the infinitely extended free
three-dimensional space R3 but within a normalization volume of finite extent.
The latter is most conveniently defined by a cube of length L and volume V =
L3 that exhibits periodic boundary conditions at its surfaces. Evidently, it is
assumed that L exceeds all relevant length scales of the system, and the limit
L→∞ will be performed at the end of the calculation in order to approach the
situation of an infinitely extended space. While the realization of such periodic
boundary conditions is hard to conceive in the experimental practice, one could
imagine that they might indeed occur within the universe whose spatial volume
is believed to be finite.

The integral in the Fourier transform (4.2) is then to be restricted to this
particular normalization volume, while the inverse Fourier transform (4.5) has to

be restricted to the plane waves exp(i~k · ~r) that comply with the above periodic

boundary conditions, i.e., whose wave vectors satisfy ~k = (2π/L)~l for some ~l ≡
(l1, l2, l3) ∈ Z3. The general solution of the wave equation (4.1) is then obtained
as the Fourier series

φ(~r, t) =
1√
V

∑

~k

(

α~ke
i(~k·~r−ωkt) + β−~ke

−i(~k·~r−ωkt)
)

, (4.7)

where we use the notation
∑

~k ≡
∑∞

l1=−∞

∑∞

l2=−∞

∑∞

l3=−∞ and require again

β−~k = α∗
~k
for all ~k ∈ R

3 in order to obtain a real-valued wave field.
While Eq. (4.1) represents the Newtonian description of the time evolution of

the wave in analogy with Eq. (3.6), a Hamiltonian formulation that generates the
propagation of the wave in analogy with Eqs. (3.1–3.3) can be obtained as well.
To this end, we interpret the local amplitude φ(~r, t) of the wave at the place ~r
as an effective “position variable” which evolves due to its coupling with other
“position variables” defined at nearby places ~r′ 6= ~r. This interpretation would
be rather obvious for sound waves in solids where φ(~r, t) can be identified with
the elongation of an atom located at ~r with respect to its equilibrium position.

Pursuing this analogy, we can formulate the Hamiltonian

H =

∫

d3r

{

1

2m̃
[Π(~r, t)]2 +

1

2
m̃c̃2

[

~∇φ(~r, t)
]2
}

≡ H [φ,Π] (4.8)
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for some arbitrarily chosen effective mass parameter m̃, which is a functional
of the wave field φ and of another real-valued field Π : R4 → R representing
the effective “momentum variables”. These fields evolve according to Hamilton’s
equations of motion

∂

∂t
φ(~r, t) =

δH

δΠ(~r, t)
=

1

m̃
Π(~r, t) , (4.9)

∂

∂t
Π(~r, t) = − δH

δφ(~r, t)
= m̃c̃2∆φ(~r, t) , (4.10)

which are defined in perfect analogy with Eqs. (3.1) and (3.2) where we replace
the partial derivatives with respect to ~r and ~p by functional derivatives with
respect to φ(~r, t) and Π(~r, t). These functional derivatives are evaluated using

δ

δΠ(~r, t)

∫

[Π(~r′, t)]
2
d3r′ = 2Π(~r, t) , (4.11)

δ

δφ(~r, t)

∫

[

~∇φ(~r′, t)
]2

d3r′ = −2∆φ(~r, t) (4.12)

where for the latter functional derivation we can employ the integration by parts
∫

~∇χ(~r′) · ~∇ϕ(~r′)d3r′ = −
∫

χ(~r′)∆ϕ(~r′)d3r′ = −
∫

[∆χ(~r′)]ϕ(~r′)d3r′ (4.13)

which is valid for two integrable fields ϕ, χ : R3 → R. Combining the Hamiltonian
equations (4.9) and (4.10) through

∂2

∂t2
φ(~r, t) =

1

m̃

∂

∂t
Π(~r, t) = c̃2∆φ(~r, t) (4.14)

finally allows us to recover the wave equation (4.1).
The Hamiltonian formalism can also be applied for the case of a wave that is

described by a complex-valued field. In that case, we would employ the Hamil-
tonian functional

H =

∫
[

1

m̃
Π∗(~r, t)Π(~r, t) + m̃c̃2~∇φ∗(~r, t) · ~∇φ(~r, t)

]

d3r ≡ H [φ, φ∗,Π,Π∗] ,

(4.15)
which is formally defined in terms of four independent fields φ, φ∗,Π,Π∗ : R4 → C,
and obtain Hamilton’s equations of motion according to the prescriptions

∂

∂t
φ(~r, t) =

δH

δΠ∗(~r, t)
=

1

m̃
Π(~r, t) , (4.16)

∂

∂t
Π(~r, t) = − δH

δφ∗(~r, t)
= m̃c̃2∆φ(~r, t) . (4.17)

This yields again the wave equation (4.1).
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4.2 Quantization of (real) waves

A quantum theory of sound can be obtained through a quantum description
of the underlying material medium that carries the sound waves, which in the
case of solids would effectively be constituted by a dense network of coupled
oscillators. In contrast, electromagnetic waves in vacuum do not appear to exhibit
a material carrier medium, even though the existence of such an aether was
seriously considered for a while until some one hundred years ago. It is therefore
necessary to introduce a scheme how to directly quantize classical waves, without
resorting to the existence of a (possibly purely virtual) carrier medium.

We shall employ the Heisenberg picture for this purpose. In close analogy
with Section 3.4, the “position” and “momentum variables” φ(~r, t) and Π(~r, t)
that describe the classical wave field at the (spatial) position ~r and the time t
within the Hamiltonian formalism are replaced by hermitian operators

φ(~r, t) 7→ φ̂(~r, t) = φ̂†(~r, t) , (4.18)

Π(~r, t) 7→ Π̂(~r, t) = Π̂†(~r, t) (4.19)

that do not commute with each other. More precisely, these field operators are
proposed to satisfy the commutation relations

[

φ̂(~r, t), Π̂(~r′, t)
]

= i~δ(~r − ~r′) (4.20)

for all ~r, ~r′ ∈ R3 and all t ∈ R, in analogy with the commutation relations (3.52) of
the ordinary position and momentum operators, where we replace the Kronecker
symbol δll′ appearing in Eq. (3.52) by Dirac’s delta distribution δ(~r − ~r′). We
furthermore impose

[

φ̂(~r, t), φ̂(~r′, t)
]

= 0 =
[

Π̂(~r, t), Π̂(~r′, t)
]

(4.21)

for all ~r, ~r′ ∈ R3 and all t ∈ R, which reflects the fact that different components of
the ordinary position (or momentum) operator do also commute with each other.

The quantum analog of the Hamiltonian (4.8) describing the spatiotempo-
ral evolution of the wave field is then straightforwardly obtained by applying
the replacements (4.18) and (4.19) within Eq. (4.8). This yields the quantum
Hamiltonian operator

Ĥ =

∫
{

1

2m̃

[

Π̂(~r, t)
]2

+
1

2
m̃c̃2

[

~∇φ̂(~r, t)
]2
}

d3r . (4.22)

In perfect analogy with Eqs. (3.62) and (3.63), the time evolution of the quantum
wave field operators is described by the Heisenberg equations

∂

∂t
φ̂(~r, t) =

i

~

[

Ĥ, φ̂(~r, t)
]

=
1

m̃
Π̂(~r, t) , (4.23)

∂

∂t
Π̂(~r, t) =

i

~

[

Ĥ, Π̂(~r, t)
]

= m̃c̃2∆φ̂(~r, t) , (4.24)
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which are obtained using
∫

d3r′
[

Π̂(~r′, t)Π̂(~r′, t), φ̂(~r, t)
]

= −2i~Π̂(~r, t) , (4.25)
∫

d3r′
[

~∇φ̂(~r′, t) · ~∇φ̂(~r′, t), Π̂(~r, t)
]

= −2i~∆φ̂(~r, t) (4.26)

as a consequence of the commutation relations (4.20) (we again apply an inte-
gration by parts in Eq. (4.26)). A second derivation of Eq. (4.23) with respect to
time yields the wave equation

1

c̃2
∂2

∂t2
φ̂(~r, t)−∆φ̂(~r, t) = 0 (4.27)

for the field operator φ̂, which is perfectly equivalent to its classical counterpart
(4.1).

As a consequence, the solution of this quantum wave equation (4.27) can be
calculated in exactly the same manner as for classical waves. Let us first consider
the conceptually simpler case of a quantum wave field that evolves within a cubic
normalization volume of length L. In perfect analogy with Eq. (4.7), we obtain

φ̂(~r, t) =
1√
V

∑

~k

(

α̂~ke
i(~k·~r−ωkt) + α̂†

~k
e−i(~k·~r−ωkt)

)

(4.28)

as general solution of Eq. (4.27), where the sum
∑

~k ≡
∑∞

l1=−∞

∑∞

l2=−∞

∑∞

l3=−∞

is restricted to wave vectors that satisfy ~k = (2π/L)(l1, l2, l3) with lj ∈ Z, and

where we define again ωk = c̃|~k|. In analogy with the harmonic oscillator, it is
convenient to rewrite Eq. (4.28) as well as the corresponding expression for the
“momentum” field operator Π̂(~r, t) = m̃(∂/∂t)φ̂(~r, t) as

φ̂(~r, t) =
1√
V

∑

~k

√

~

2m̃ωk

[

â~k(t)e
i~k·~r + â†~k(t)e

−i~k·~r
]

, (4.29)

Π̂(~r, t) =
1

i
√
V

∑

~k

√

~m̃ωk

2

[

â~k(t)e
i~k·~r − â†~k(t)e

−i~k·~r
]

, (4.30)

where we introduce the time-dependent operators

â~k(t) =

√

2m̃ωk

~
α̂~ke

−iωkt . (4.31)

The latter can be determined through an inversion of the Fourier series expansions
(4.29) and (4.30) yielding

â~k(t) =
1√
V

∫

V

√

m̃ωk

2~

[

φ̂(~r, t) +
i

m̃ωk
Π̂(~r, t)

]

e−i~k·~rd3r , (4.32)

â†~k(t) =
1√
V

∫

V

√

m̃ωk

2~

[

φ̂(~r, t)− i

m̃ωk

Π̂(~r, t)

]

ei
~k·~rd3r . (4.33)
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Evaluating Eqs. (4.32) and (4.33) at t = 0 allows one then to express the solution
of the Heisenberg equations (4.23) and (4.24) in terms of the initial definitions
of the field operators φ̂ and Π̂, which in turn can be practically used in order to
calculate expectation values of any kind of (one-, two-, or many-body) operators
with respect to the initial quantum state of the system.

It is a tedious but straightforward calculation to show that the quantum
Hamiltonian (4.22) can be expressed in terms of these operators â~k and â†~k as

Ĥ =
∑

~k

~ωk

2

[

â~k(t)â
†
~k
(t) + â†~k(t)â~k(t)

]

. (4.34)

This expression can be even further simplified by inferring from Eqs. (4.32) and
(4.33) the commutators

[

â~k(t), â
†

~k′
(t)
]

= δ~k~k′ (4.35)

as well as
[

â~k(t), â~k′(t)
]

= 0 =
[

â†~k(t), â
†

~k′
(t)
]

(4.36)

for all ~k = (2π/L)~l and all ~k′ = (2π/L)~l′ with ~l,~l′ ∈ Z3, using the proposed
commutation rules (4.20) and (4.21) for the field operators φ̂ and Π̂. We then
obtain

Ĥ =
∑

~k

~ωk

[

â~k(t)â
†

~k
(t) +

1

2

]

. (4.37)

This latter Hamiltonian effectively describes a combination of infinitely many
(uncoupled) quantum harmonic oscillators that are associated with the eigen-

modes exp(i~k · ~r) and oscillate with the frequencies ωk. As is seen from the com-
mutation relations (4.35), â~k and â

†
~k
represent the corresponding ladder operators.

In close analogy with the “ordinary” quantum harmonic oscillator discussed in
Section 3.5, the application of â†~k increments by one the quantum number as-

sociated with the mode exp(i~k · ~r) or, in other words, “creates an excitation”
within that mode, whereas the application of â~k decrements the mode’s quantum
number or “removes an excitation” within that mode. These operators are there-
fore named creation and annihilation operators, and the “excitations” that they
create or annihilate are identified with indistinguishable quantum particles that
are of bosonic nature (such as photons, phonons, or magnons, to mention a few
examples), which is in accordance with the fact that two or more such particles
can occupy the same mode.

In analogy with Eq. (3.77), the normalized eigenstates of the Hamiltonian
(4.37) can formally be written as

∣

∣

∣

{

n~k
}

~k=(2π/L)~l with ~l∈Z3

〉

=





∏

~k

1
√

n~k!

(

â†~k

)n~k



 |−〉 (4.38)
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for all non-negative integers n~k ∈ N0, where |−〉 ≡ | . . . , 0, 0, 0, . . .〉 represents the
ground state of the Hamiltonian. As this particular state |−〉 is characterized by
the absence of any excitation or particle within the wave modes, we also refer to it
as vacuum state. It is interesting to note that the associated ground state energy
E0 = 〈−|Ĥ|−〉 = 1

2

∑

~k ~ωk =∞ is infinitely large, due to the fact that the wave
equation (4.1) exhibits infinitely many eigenmodes. While such an infinity may
eventually give rise to some conceptual trouble in the framework of theories for
quantum gravity that rely on absolute energies, it can essentially be discarded in
our context of special relativity as E0 is merely a constant that does not influence
the time evolution of the system.

Let us finally discuss the case of a quantum wave that evolves within the
infinitely extended three-dimensional space R3. Inspired from Eq. (4.5), we would
now express the solution of the quantum wave equation (4.27) as

φ̂(~r, t) =
1
√
2π

3

∫

d3k

√

~

2m̃ωk

[

â~k(t)e
i~k·~r + â†~k(t)e

−i~k·~r
]

, (4.39)

which essentially amounts to replacing within Eq. (4.29) the summation over wave
vectors by an integration. This expression implicitly requires an integrability
condition to hold concerning the spatial distribution of excitations or particles
within the intial quantum state of the system, in order for such a Fourier ansatz
to be justified. In analogy with Eq. (4.32), we consequently obtain

â~k(t) =
1
√
2π

3

∫

d3r

√

m̃ωk

2~

[

φ̂(~r, t) +
i

m̃ωk

Π̂(~r, t)

]

e−i~k·~r (4.40)

for the annihilation operator associated with the wave mode exp(i~k · ~r). We can
then derive the commutation relations

[

â~k(t), â
†

~k′
(t)
]

= δ(~k − ~k′) , (4.41)

which can be obtained from Eq. (4.35) by replacing the Kronecker delta δ~k~k′ with

Dirac’s delta distribution δ(~k − ~k′), as well as

[

â~k(t), â~k′(t)
]

= 0 =
[

â†~k(t), â
†
~k′
(t)
]

(4.42)

for all ~k,~k′ ∈ R3.

The quantum Hamiltonian (4.22) is now reformulated as

Ĥ =

∫

d3k
~ωk

2

[

â~k(t)â
†

~k
(t) + â†~k(t)â~k(t)

]

, (4.43)
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where for obvious reasons we do not attempt to further simplify the expression by
applying the commutator (4.41). This latter expression gives rise to the Heisen-
berg equations

d

dt
â~k(t) =

i

~

[

Ĥ, â~k(t)
]

= −iωkâ~k(t) , (4.44)

d

dt
â†~k(t) =

i

~

[

Ĥ, â†~k(t)
]

= iωkâ
†
~k
(t) (4.45)

owing to the commutation relations (4.41) and (4.42). These equations are solved
as â~k(t) = â~k(0) exp(−iωkt) and â

†
~k
(t) = â†~k(0) exp(iωkt), which is in perfect agree-

ment with the time dependence (4.31) that would be required within Eq. (4.39)
in order for that expression to solve the quantum wave equation (4.27).

4.3 The photon

Let uns now specifically discuss the quantization of electromagnetic waves in
vacuum. Following the reasoning developed in Section 2.2, we can represent
the electromagnetic field according to Eq. (2.25) through the associated four-

potential (Aν) = (Φ, ~A) which is chosen such that it satisfies the Lorenz gauge
(2.32) ∂νA

ν(x) = 0 for all x ∈ R4. In the absence of electric charges and currents,
this four-potential evolves according to the wave equation

∂µ∂
µAν(x) = 0 (4.46)

for all x ∈ R
4, as was shown in Section 2.3.

The absence of charged matter allows us to further simplify the problem by
assuming without loss of generality that the scalar potential Φ ≡ 0 vanishes.
More precisely, starting from a four-potential A′ν that satisfies the Lorenz gauge
and the wave equation (4.46) but exhibits a nonvanishing scalar potential Φ′ 6≡ 0,
we can perform the gauge transformation (2.30) A′

ν 7→ Aν = A′
ν + ∂νχ with the

Lorentz scalar field

χ(~r, t) = −c
∫ t

0

Φ′(~r, t′)dt′ +
1

4πc

∫

d3r′
1

|~r − ~r′|
∂Φ′

∂t
(~r′, 0) . (4.47)

This yields Φ(~r, t) = 0 and
~∇ · ~A(~r, t) = 0 (4.48)

for all (~r, t) ∈ R4 for the new scalar and vector potentials, respectively. Hence,

the wave equation (4.46) has to be considered for the vector potential ~A only,
i.e., we have to solve

(

1

c2
∂2

∂t2
−∆

)

~A(~r, t) = 0 . (4.49)
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Following the lines of reasoning developed within Section 4.1, the general
solution of Eq. (4.49) is written as

~A(~r, t) =
1
√
2π

3

∫

d3k
(

~A~ke
i(~k·~r−ωkt) + ~A∗

~k
e−i(~k·~r−ωkt)

)

(4.50)

with ωk = c|~k|, provided we can assume that ~A is integrable (which implies

| ~A(~r, t)| → 0 for |~r| → ∞). The gauge condition (4.48) implies that the complex

amplitudes ~A~k are perpendicular to the associated wave vectors, i.e., they satisfy
~k · ~A~k = 0 for all ~k ∈ R3. This latter property can be incorporated by defining for

each wave vector ~k an orthonormal basis of properly oriented polarization vectors

~e1(~k), ~e2(~k), ~e3(~k) satisfying the relations ~e1(~k) × ~e2(~k) = ~e3(~k), ~e2(~k) × ~e3(~k) =
~e1(~k), and ~e3(~k) × ~e1(~k) = ~e2(~k), where we choose ~e3(~k) = ~e~k ≡ ~k/|~k| to be the

unit vector in the direction of ~k. We can then express

~A~k = α~k1~e1(
~k) + α~k2~e2(

~k) (4.51)

for some complex amplitudes α~k1, α~k2 ∈ C and thereby obtain the expression

~A(~r, t) =
1
√
2π

3

∫

d3k
∑

σ=1,2

(

α~kσe
i(~k·~r−ωkt) + α∗

~kσ
e−i(~k·~r−ωkt)

)

~eσ(~k) (4.52)

for the electromagnetic vector potential in vacuum. Note that the precise ex-
pressions for ~e1(~k) and ~e2(~k) are not important for the following. If needed,

they could, e.g., be defined through the prescriptions ~e1(~k) = ±~e1 if ~e~k = ±~e3
and ~e1(~k) = ~e~k × ~e3/|~e~k × ~e3| otherwise, where ~e1, ~e2, ~e3 denote the original unit
vectors of the spatial coordinate system.

Following Eqs. (2.28) and (2.29) for the special case Φ ≡ 0, the expressions
for the associated electric and magnetic fields are obtained through

~E(~r, t) = −1
c

∂

∂t
~A(~r, t) , (4.53)

~B(~r, t) = ~∇× ~A(~r, t) . (4.54)

Using the expression (2.41) for the energy density and combining it with Eqs. (4.53)
and (4.54), the total energy contained within the electromagnetic field is then cal-
culated as

H =

∫

d3r
1

8π

[

~E2(~r, t) + ~B2(~r, t)
]

(4.55)

=
1

8π

∫

d3r

{

[

1

c

∂

∂t
~A(~r, t)

]2

+
[

~∇× ~A(~r, t)
]2
}

(4.56)

=
1

2π

∫

d3k
(

|α~k1|2 + |α~k2|2
)

k2 , (4.57)
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where for the last calculation step we insert the explicit expression (4.52) for the
vector potential. Similarly, we obtain

~P =

∫

d3r
1

4πc
~E(~r, t)× ~B(~r, t) =

1

2πc

∫

d3k
(

|α~k1|2 + |α~k2|2
)

k2~e~k (4.58)

for the total momentum contained within the field, using the expression (2.43)
for the momentum density.

The expression (4.56) for the total energy can be interpreted as classical
Hamiltonian functional governing the evolution of electromagnetic waves. In-
deed, by introducing the associated (pseudo-)”momentum potential”

~Π(~r, t) = m̃
∂

∂t
~A(~r, t) (4.59)

and the effective (pseudo-)”mass parameter”

m̃ =
1

4πc2
, (4.60)

we can rewrite Eq. (4.56) (using an integration by parts) as

H =

∫

d3r

{

1

2m̃

[

~Π(~r, t)
]2

− 1

2
m̃c2 ~A(~r, t) ·∆ ~A(~r, t)

}

(4.61)

and thereby establish a perfect analogy with the general expression (4.8) for a
Hamiltonian that describes (scalar) classical waves.

This analogy can now be exploited in order to quantize the electromagnetic
field using the Heisenberg picture. Following the reasoning developed in Sec-

tion 4.2, the real-valued vector fields ~A and ~Π become hermitian operators ~̂A

and ~̂Π within a quantum theory of electromagnetic radiation, which satisfy the
commutation relations

[

Âl(~r, t), Π̂l′(~r
′, t)
]

= i~δll′δ(~r − ~r′) (4.62)

as well as
[

Âl(~r, t), Âl′(~r
′, t)
]

= 0 =
[

Π̂l(~r, t), Π̂l′(~r
′, t)
]

(4.63)

for all l, l′ ∈ {1, 2, 3}, all ~r, ~r′ ∈ R3, and all t ∈ R. This correspondingly implies
that the complex amplitudes α~kσ and α∗

~kσ
arising within the expression (4.52) for

the vector potential respectively have to be substituted by operators α̂~kσ and α̂†
~kσ

that are hermitian conjugates of each other. To establish again the connection
with the quantum harmonic oscillator, we replace them by ladder operators â~kσ
and â†~kσ that are defined according to

â~kσ(t) =

√

2m̃ωk

~
α̂~kσe

−iωkt (4.64)
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in analogy with Eq. (4.31). It is then straightforward to show that these ladder
operators satisfy the commutation relations

[

â~kσ(t), â
†
~k′σ′

(t)
]

= δ(~k − ~k′)δσσ′ (4.65)

as well as
[

â~kσ(t), â~k′σ′(t)
]

= 0 =
[

â†~kσ(t), â
†
~k′σ′

(t)
]

(4.66)

for all ~k,~k′ ∈ R3, all σ, σ′ ∈ {1, 2}, and all t ∈ R.
Expressed in terms of these ladder operators, the quantum Hamiltonian of

the electromagnetic field in vacuum is then evaluated as

Ĥ =
1

2
m̃c2

∫

d3r
[

~̂E2(~r, t) + ~̂B2(~r, t)
]

(4.67)

=

∫

d3k
∑

σ=1,2

~ωk

2

[

â~kσ(t)â
†

~kσ
(t) + â†~kσ(t)â~kσ(t)

]

, (4.68)

which corresponds again to a combination of infinitely many (uncoupled) quan-
tum harmonic oscillators. The associated excitations are identified with quantum
particles of bosonic nature which are termed photons in the electromagnetic con-
text. â†~kσ and â~kσ are then respectively identifed with the creation and annihila-

tion operators of a photon within the mode exp(i~k · ~r)~eσ(~k). As the application
of those creation and annihilation operators to a given quantum state of the elec-
tromagnetic field will respectively increase or decrease the total energy contained
within that mode by ~ωk, we state that the corresponding photon possesses the
energy ~ωk.

Let us finally point out that photons do not only carry energy but also momen-
tum. Indeed, the quantum analog for the expression (4.58) of the total momentum
contained within the electromagnetic field is evaluated as

~̂P = m̃c

∫

d3r ~̂E(~r, t)× ~̂B(~r, t) (4.69)

=

∫

d3k
∑

σ=1,2

~

2
~k
[

â~kσ(t)â
†
~kσ
(t) + â†~kσ(t)â~kσ(t)

]

, (4.70)

which implies that the creation of an excitation within the mode exp(i~k · ~r)~eσ(~k)
increases the expectation value of the field momentum by ~~k. This suggests that
the associated photon possesses the momentum ~~k.

Problem

4.1 Show the validity of Eq. (4.34) using the definition (4.22) of the quantum
Hamiltonian in combination with the expressions (4.29) and (4.30) for the
field operators φ̂(~r, t) and Π̂(~r, t).
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4.2 Show that Eq. (4.48) is satisfied after the gauge transformation defined by
Eq. (4.47).

4.3 Show how Eq. (4.68) can be calculated from Eq. (4.67).



Chapter 5

The Klein-Gordon theory

5.1 The Klein-Gordon equation

As we pointed out in Section 3.2, the Schrödinger equation

i~
∂

∂t
ψ(~r, t) = − ~2

2m
∆ψ(~r, t) , (5.1)

which describes a free particle with mass m in the absence of any external poten-
tial, is not in agreement with the principle of relativity as it corresponds to the
nonrelativistic approximation E = p2/(2m) of the particle’s energy-momentum
relation. The correct expression for the latter is given by Eq. (3.29), namely
E = [(mc2)2 + c2p2]1/2, from which follows the relation

E2 = (mc2)2 + c2p2 . (5.2)

In accordance with the association pν ←→ ∂ν between the four-momentum (pν) ≡
(E/c, ~p) and (∂ν) ≡ (1

c
∂
∂t
, ~∇) that was discussed at the beginning of Section 3.3,

we can obtain a wave equation from Eq. (5.2) through the replacement E −→
i~∂/∂t and ~p −→ −i~∂/∂~r. This wave equation will be considered as relativistic
generalization for the Schrödinger equation in this chapter.

We therefore propose to describe a relativistic quantum particle with mass m
by a real- or complex-valued scalar field ϕ that satisfies the equation

(

1

c2
∂2

∂t2
−∆+

1

λ2

)

ϕ(~r, t) = 0 , (5.3)

where we introduce by

λ =
~

mc
(5.4)

the Compton wavelength of the particle. Using covariant notation, Eq. (5.3) can
be rewritten as

(

∂ν∂
ν +

1

λ2

)

ϕ(x) = 0 . (5.5)

51
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It is clearly in agreement with the principle of relativity as Eq. (5.5) obviously
represents a Lorentz scalar.

Equation (5.3) is named after the physicists Oskar Klein and Walter Gordon
who proposed it in 1926. It is said that Erwin Schrödinger, too, had seriously
considered this equation in 1925 for describing the electron within the hydrogen
atom. He finally discarded it, as it didn’t seem to correctly reproduce the fine
structure of the hydrogen spectrum, and went on instead, in the beginning of
1926, with the publication of what is now known as Schrödinger’s equation.

5.2 Conservation of charge

It would be most natural to proceed as in the case of the Schrödinger equation and
interpret the field ϕ as wavefunction of the particle under consideration, meaning
that the modulus square of ϕ(~r, t) should describe the probability that at time
t the particle is found at the position ~r. It is, however, impossible to derive
a continuity equation of the form (3.23) from the Klein-Gordon equation (5.3),
simply because the latter represents not a first- but a second-order differential
equation in time, in contrast to the Schrödinger equation. We therefore discard
this possibility and construct instead a four-current

jν(x) =
i~

2m
[ϕ∗(x)∂νϕ(x)− ϕ(x)∂νϕ∗(x)] . (5.6)

through the relativistic generalization of the expression (3.22) for the probability
flux of a nonrelativistic quantum particle. As is straightforwardly verified, this
four-current satisfies the continuity equation ∂νj

ν(x) = 0 provided ϕ is a solution
of the Klein-Gordon equation (5.5).

In nonrelativistic terms, we can express (jν) = (cρ,~j) with

ρ(~r, t) =
i~

2mc2

[

ϕ∗(~r, t)
∂

∂t
ϕ(~r, t)− ϕ(~r, t) ∂

∂t
ϕ∗(~r, t)

]

, (5.7)

~j(~r, t) =
~

2im

[

ϕ∗(~r, t)~∇ϕ(~r, t)− ϕ(~r, t)~∇ϕ∗(~r, t)
]

. (5.8)

While Eq. (5.8) exactly corresponds to the analogous expression (3.22) for the
probability flux in the nonrelativistic quantum theory (which actually motivates
the choice of the global prefactor within Eq. (5.6)), the expression (5.7) poses a
conceptual problem insofar as it would not necessarily yield a positive definite
density. Indeed, it can be easily verified within Eq. (5.6) that jν changes sign
under complex conjugation of the field ϕ. Hence, if we happen to find a solu-
tion ϕ of the Klein-Gordon equation (5.3) whose associated density according to
Eq. (5.7) satisfies ρ(~r, t) > 0 for all (~r, t) ∈ R

4, complex conjugation of ϕ would
yield another solution of Eq. (5.3) whose density would be negative definite within
R4.
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We therefore give up the attempt to somehow distill from the Klein-Gordon
field ϕ a conservation law for a positive definite probability to find a particle
somewhere in space. Instead, we interpret (cρ,~j) as electric four-current of the
particle under consideration, in the sense that ρ(~r, t) describes the density of
the electric charge at position ~r and time t, and ~j(~r, t) represents the associated
current density. As we shall work out in more detail later on within this chapter,
a generic complex-valued field ϕ can then be decomposed into two components
ϕ(+) and ϕ(−) that respectively have a purely positive and negative charge density.
They can be associated with the particle and antiparticle components of a given
particle species, e.g. π+ and π− in the case of the π meson. In the case of a purely
real-valued field ϕ ∈ R, on the other hand, we obtain a vanishing four-current
jν ≡ 0. Consequently, such a field could describe an electrically neutral particle,
such as π0 in the case of the π meson.

5.3 Energy-momentum tensor

As for the theory of electrodynamics (see Section 2.4), the conservation of en-
ergy and momentum within the framework of the Klein-Gordon theory has to
be described by an energy-momentum tensor. Indeed, as we already pointed out
in Section 2.1, energy and momentum constitute a four-vector that has identi-
cal transformation properties under Lorentz transformations as the space-time
vector of an event. The conservation of any individual component of this four-
vector, on the other hand, is governed by another Lorentz vector, namely the
four-current consisting of the spatial density and the flux that are associated
with the conserved quantity.

The precise form of the energy-momentum tensor can be derived from the
Lagrangian formulation of the Klein-Gordon theory, namely by using the Emmy-
Noether theorem which relates continuous symmetries that arise within a field
theory with conserved quantities. The conservation of energy and momentum is
generally obtained in systems that exhibit translational invariance in time and
space, respectively. This holds obviously for the Klein-Gordon equation (5.3)
which is invariant under displacements of the origin in the Minkowski space.

Specifically, the energy-momentum tensor of the Klein-Gordon theory can be
written as

T µν(x) =
~2

2m

{

[∂νϕ∗(x)] [∂µϕ(x)] + [∂µϕ∗(x)] [∂νϕ(x)]
1

1

−gµν [∂αϕ∗(x)] [∂αϕ(x)] +
1

λ2
gµνϕ∗(x)ϕ(x)

}

. (5.9)

It is obviously symmetric, i.e. T µν(x) = T νµ(x) for all x ∈ R4, and satisfies the
continuity equation ∂νT

µν(x) = 0 provided ϕ solves the Klein-Gordon equation
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(5.5). The energy density of the Klein-Gordon field is then obtained as

u(~r, t) = T 00(~r, t) =
~
2

2m

(

∣

∣

∣

∣

1

c

∂ϕ

∂t
(~r, t)

∣

∣

∣

∣

2

+
∣

∣

∣

~∇ϕ(~r, t)
∣

∣

∣

2

+

∣

∣

∣

∣

1

λ
ϕ(~r, t)

∣

∣

∣

∣

2
)

. (5.10)

This then yields the total energy

H =
~2

2m

∫

d3r

(

∣

∣

∣

∣

1

c

∂ϕ

∂t
(~r, t)

∣

∣

∣

∣

2

+
∣

∣

∣

~∇ϕ(~r, t)
∣

∣

∣

2

+

∣

∣

∣

∣

1

λ
ϕ(~r, t)

∣

∣

∣

∣

2
)

. (5.11)

Equation (5.11) is identical with the Hamiltonian functional (4.15) describing a
complex-valued wave, except for the last term ∝ |ϕ(~r, t)|2. The latter could be
interpreted as some sort of eigenfrequency contribution of the effective carrier
medium that transports the wave, if such an aether interpretation would make
sense in the framework of the Klein-Gordon theory.

The momentum density of the Klein-Gordon field is evaluated as

~p(~r, t) =

(

1

c
T 0i(~r, t)

)

(5.12)

= − ~2

2mc2

(

∂ϕ∗

∂t
(~r, t)~∇ϕ(~r, t) + ∂ϕ

∂t
(~r, t)~∇ϕ∗(~r, t)

)

. (5.13)

As in electrodynamics, it is identical to the flux of energy ~S(~r, t) = (cT i0(~r, t)) =
c2~p(~r, t) up to a constant prefactor c2.

5.4 Coupling to an electromagnetic field

As in the case of nonrelativistic quantum mechanics, the interaction of a Klein-
Gordon particle with an electromagnetic field is incorporated through the re-
placement

∂ν 7→ ∂ν +
iq

~c
Aν(x) , (5.14)

which is referred to as minimal coupling. Here, q is the electric charge of the
particle and (Aν) = (Φ, ~A) represents the four-potential that describes the elec-
tromagnetic field. Carrying out this replacement (5.14) within the Klein-Gordon
equation (5.5) yields the modified equation

(

∂ν +
iq

~c
Aν(x)

)(

∂ν +
iq

~c
Aν(x)

)

ϕ(x) +
1

λ2
ϕ(x) = 0 (5.15)

which is rewritten in nonrelativistic terms as
[

1

c2

(

∂

∂t
+
iq

~
Φ(~r, t)

)2

−
(

~∇− iq

~c
~A(~r, t)

)2

+
1

λ2

]

ϕ(~r, t) = 0 . (5.16)
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Complex conjugation of Eq. (5.15) yields
(

∂ν −
iq

~c
Aν(x)

)(

∂ν − iq

~c
Aν(x)

)

ϕ∗(x) +
1

λ2
ϕ∗(x) = 0 , (5.17)

which essentially corresponds to a Klein-Gordon equation for a particle that has
the opposite charge −q. This supports our interpretation that the four-current
jν defined through Eq. (5.6), which changes sign under complex conjugation of
ϕ, describes the conservation of charge.

As in the case of the Schrödinger equation, the invariance of the Klein-Gordon
equation (5.15) under gauge transformations Aν 7→ A′

ν with

A′
ν(x) = Aν(x) + ∂νχ(x) (5.18)

for some (twice continuously differentiable) scalar field χ is assured by performing
the associated gauge transformation ϕ 7→ ϕ′ of the Klein-Gordon field with

ϕ′(~r, t) = ϕ(~r, t) exp

[

− iq
~c
χ(~r, t)

]

. (5.19)

It can then be shown that ϕ′ satisfies the Klein-Gordon equation
(

∂ν +
iq

~c
A′

ν(x)

)(

∂ν +
iq

~c
A′ν(x)

)

ϕ(x) +
1

λ2
ϕ′(x) = 0 (5.20)

defined with the transformed four-potential A′ν .
As the minimal coupling (5.14) arises quite frequently in relativistic quantum

mechanics, it makes sense to define a modified derivative operator according to

Dν ≡ ∂ν +
iq

~c
Aν(x) , (5.21)

which is named covariant derivative. The Klein-Gordon equation (5.15) in the
presence of an electromagnetic field can then be rewritten in a compact manner
as

(

DνD
ν +

1

λ2

)

ϕ(x) = 0 . (5.22)

We finally note that the definitions for conserved quantities, as given by the
expressions (5.6) and (5.9) for the four-current and the energy-momentum tensor,
respectively, are also modified in the presence of a coupling to an electromagnetic
field. This is very similar to nonrelativistic quantum mechanics where we already
pointed out the necessity to distinguish between a canonical and a kinetic momen-
tum. In practice, this modification can be accomplished through the application
of the minimal coupling procedure (5.14), which amounts to replacing deriva-
tive operators ∂ν with the covariant derivative (5.21). This yields the modified
four-current

Jν(x) =
i~

2m
[ϕ∗(x)Dνϕ(x)− ϕ(x)(Dνϕ)∗(x)] . (5.23)
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satisfying ∂νJ
ν(x) = 0, as well as the modified energy-momentum tensor

T µν(x) =
~2

2m

{

[(Dνϕ)∗(x)] [Dµϕ(x)] + [(Dµϕ)∗(x)] [Dνϕ(x)]
1

1

−gµν [(Dαϕ)∗(x)] [Dαϕ(x)] +
1

λ2
gµνϕ∗(x)ϕ(x)

}

. (5.24)

Quite logically, this modified energy-momentum tensor does no longer feature
the conservation of energy and momentum of the Klein-Gordon field as those
quantities are now exchanged with the electromagnetic field. Indeed, provided
ϕ solves the modified Klein-Gordon equation (5.15), one can straightforwardly
derive from Eq. (5.24)

∂νT µν(x) =
q

c
F µν(x)Jν(x) , (5.25)

where we use the expression (5.23) for the modified four-current and the relation
(2.25) for the electromagnetic field tensor. Note that the right-hand side of this
equation, which consequently represents the density of sources or sinks of energy
and momentum for the Klein-Gordon field, is exactly counterbalanced by the
source term appearing on the right-hand side of the analogous energy-momentum
balance equation (2.45) for the electromagnetic field. This expresses the fact that
the total energy and momentum contained within both the Klein-Gordon field
and the electromagnetic field are well conserved.

5.5 Plane waves

In the absence of electromagnetic fields, the Klein-Gordon equation (5.3) can be
solved by applying the Fourier transformation

ϕ(~r, t) =
1
√
2π

3

∫

ϕ̃(~k, t)ei
~k·~rd3k , (5.26)

which can be performed provided the Klein-Gordon field is integrable. This yields
the ordinary differential equation

(

1

c̃2
∂2

∂t2
+ ~k2 +

1

λ2

)

ϕ̃(~k, t) = 0 (5.27)

whose general solution can be written as

ϕ̃(~k, t) = α
(+)
~k
e−iωkt + α

(−)

−~k
eiωkt (5.28)

for some complex coefficients α
(±)

±~k
, where we define

ωk = c

√

~k2 + 1/λ2. (5.29)
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The general solution of the Klein-Gordon equation is then obtained through
Eq. (5.26) yielding

ϕ(~r, t) =
1
√
2π

3

∫

d3k
(

α
(+)
~k
ei(

~k·~r−ωkt) + α
(−)
~k
e−i(~k·~r−ωkt)

)

(5.30)

=
1
√
2π

3

∫

d3k
(

ϕ
(+)
~k

(~r, t) + ϕ
(−)
~k

(~r, t)
)

, (5.31)

where we define by

ϕ
(±)
~k

(~r, t) = α
(±)
~k
e±i(~k·~r−ωkt) = α

(±)
~k
e∓ikx (5.32)

the plane monochromatic waves that are associated with the wave four-vector

k ≡ (kν) = (ωk/c,~k).

It is instructive to evaluate the charge density associated with the wave ϕ
(±)
~k

.

We obtain according to Eq. (5.7)

ρ
(±)
~k

=
~

mc2
Im

[

ϕ
(±)
~k

(~r, t)

(

∂

∂t
ϕ
(±)
~k

(~r, t)

)∗]

= ±~ωk

mc2

∣

∣

∣α
(±)
~k

∣

∣

∣

2

. (5.33)

Hence, a plane wave that exhibits the temporal oscillation behaviour e−iωkt can
be associated with a particle that has positive charge q, while a plane wave that
oscillates according to eiωkt would describe the corresponding antiparticle with
negative charge −q. This interpretation is confirmed by the expression for the
total charge that is contained within the general solution (5.30) of the Klein-
Gordon equation, which is evaluated as

Q =
~

mc2

∫

d3rIm

[

ϕ(~r, t)
∂

∂t
ϕ∗(~r, t)

]

=

∫

d3k
~ωk

mc

(

∣

∣

∣
α
(+)
~k

∣

∣

∣

2

−
∣

∣

∣
α
(−)
~k

∣

∣

∣

2
)

. (5.34)

In the case of a purely real Klein-Gordon field with ϕ(~r, t) = ϕ∗(~r, t) for all

~r and t, we have to impose the condition α
(+)
~k

= (α
(−)
~k

)∗ within the expression

(5.30) for the general solution. This naturally yields Q = 0 for the total charge, in
accordance with the interpretation that a real-valued Klein-Gordon field describes
an electrically neutral particle.

5.6 Quantization

Our discussion of the Klein-Gordon equation and its implications has revealed so
far that it essentially corresponds to a classical field theory. It is therefore subject
to quantization, as are other field theories such as electrodynamics. Quantizing
the Klein-Gordon field according to the scheme that was presented in Chapter
4 will yield particles (and antiparticles) as quantum excitations of the effective
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harmonic oscillator modes that correspond to the plane waves (5.32), in close
analogy with photons in Maxwell’s theory.

Let us first discuss the conceptually simpler case of an electrically neutral
particle species, which is described by a purely real-valued Klein-Gordon field.
In perfect analogy with the quantization of waves discussed in Section 4.2, we
employ the Heisenberg picture and replace the Klein-Gordon field by a hermitian
field operator:

ϕ(~r, t) 7→ ϕ̂(~r, t) = ϕ̂†(~r, t) . (5.35)

The associated “momentum” field operator is obtained through the replacement

m̃
∂

∂t
ϕ(~r, t) 7→ Π̂(~r, t) = Π̂†(~r, t) . (5.36)

Here we define

m̃ =
~2

mc2
(5.37)

such that the expression (5.11) for the total energy corresponds to the Hamil-
tonian functional that generates the Klein-Gordon equation through Hamilton’s
equations of motion, in close analogy with Eqs. (4.16) and (4.17). We then impose
the commutation rules

[

ϕ̂(~r, t), Π̂(~r′, t)
]

= i~δ(~r − ~r′) (5.38)

as well as
[ϕ̂(~r, t), ϕ̂(~r′, t)] = 0 =

[

Π̂(~r, t), Π̂(~r′, t)
]

(5.39)

for all ~r, ~r′ ∈ R3 and all t ∈ R.
The general solution of the Klein-Gordon equation that governs the time

evolution of the field operator can be written in the form (5.30) where we replace
the amplitudes by operators and take into account that ϕ̂(~r, t) is a hermitian
operator. As in Section 4.2, we perform the substitution

α
(+)
~k

7→
√

~

2m̃ωk

â~k , (5.40)

α
(−)
~k

7→
√

~

2m̃ωk
â†~k , (5.41)

where ωk is defined through Eq. (5.29). This yields ladder operators that satisfy
the commutation rules

[

â~k(t), â
†
~k′
(t)
]

= δ(~k − ~k′) (5.42)

as well as
[

â~k(t), â~k′(t)
]

= 0 =
[

â†~k(t), â
†
~k′
(t)
]

(5.43)

for all ~k,~k′ ∈ R3.
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The quantum operators that are associated with the total energy and the
total momentum of the Klein-Gordon field are given by

Ĥ =
~2

2m

∫

d3r

[

1

c2

(

∂

∂t
ϕ̂†(~r, t)

)(

∂

∂t
ϕ̂(~r, t)

)

+
(

~∇ϕ̂†(~r, t)
)

·
(

~∇ϕ̂(~r, t)
)

+
1

λ2
ϕ̂†(~r, t)ϕ̂(~r, t)

]

, (5.44)

~̂P = − ~2

2mc2

∫

d3r

[(

∂

∂t
ϕ̂†(~r, t)

)

(

~∇ϕ̂(~r, t)
)

+
(

~∇ϕ̂†(~r, t)
)

(

∂

∂t
ϕ̂(~r, t)

)]

, (5.45)

as can be obtained from a direct quantization of the expressions (5.10) and (5.13)
for the classical energy and momentum density, respectively. Expressing them in
terms of the above ladder operators yields

Ĥ =

∫

~ωk

2

(

â~kâ
†

~k
+ â†~kâ~k

)

d3k , (5.46)

~̂P =

∫

~

2
~k
(

â~kâ
†

~k
+ â†~kâ~k

)

d3k (5.47)

for the quantum Hamiltonian and the momentum operator of an electrically
neutral particle species. We can therefore infer that â†~k represents the creation

operator of a particle that travels with momentum ~~k and has the energy ~ωk =
[(mc2)2 + ~2c2~k2]1/2, while â~k is the corresponding annihilation operator.

The case of an electrically charged particle species is more involved insofar
as it deals with a complex-valued Klein-Gordon field on a classical level. Its
quantization consequently yields a nonhermitian field operator

ϕ(~r, t) 7→ ϕ̂(~r, t) 6≡ ϕ̂†(~r, t) . (5.48)

The commutation rules with the associated “momentum” field operator, which
is nonhermitian as well and can be obtained through

m̃
∂

∂t
ϕ(~r, t) 7→ Π̂(~r, t) 6≡ Π̂†(~r, t) , (5.49)

are determined in close analogy with the Hamiltonian formalism for a classical
complex-valued field as was discussed at the end of Section 4.1: we formally treat
ϕ̂(~r, t) and ϕ̂†(~r, t) as independent field operators and consider Π̂†(~r, t) to be the
conjugate counterpart of ϕ̂(~r, t) while Π̂(~r, t) would be the counterpart of ϕ̂†(~r, t).
This yields the commutation relations

[

ϕ̂(~r, t), Π̂†(~r′, t)
]

= i~δ(~r − ~r′) =
[

ϕ̂†(~r, t), Π̂(~r′, t)
]

(5.50)
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as well as

[ϕ̂(~r, t), ϕ̂(~r′, t)] = 0 =
[

ϕ̂†(~r, t), ϕ̂†(~r′, t)
]

, (5.51)
[

Π̂(~r, t), Π̂(~r′, t)
]

= 0 =
[

Π̂†(~r, t), Π̂†(~r′, t)
]

, (5.52)

[

ϕ̂(~r, t), ϕ̂†(~r′, t)
]

= 0 =
[

Π̂(~r, t), Π̂†(~r′, t)
]

, (5.53)
[

ϕ̂(~r, t), Π̂(~r′, t)
]

= 0 =
[

ϕ̂†(~r, t), Π̂†(~r′, t)
]

(5.54)

for all ~r, ~r′ ∈ R3 and all t ∈ R. In close analogy with the classical Hamiltonian
functional (4.15) of a complex-valued field, we now have to set

m̃ =
~
2

2mc2
(5.55)

in order to ensure that the Heisenberg equations derived from the Hamiltonian
(5.44) in combination with the above commutation rules yield the correct time
evolution for the field operators ϕ̂(~r, t) and Π̂(~r, t).

The general solution of the Klein-Gordon equation for ϕ̂(~r, t) yields again the

expression (5.30) where we have to replace the amplitudes α
(±)
~k

by operators. In

analogy with Eqs. (5.40) and (5.41), we perform the substitution

α
(+)
~k

7→
√

~

2m̃ωk
â~k , (5.56)

α
(−)
~k

7→
√

~

2m̃ωk

b̂†~k , (5.57)

where contrary to the case of an electrically neutral particle species we cannot
apply the identification â~k ≡ b̂~k here. We thereby obtain two sets of ladder

operators â~k, â
†
~k
and b̂~k, b̂

†
~k
that satisfy the commutation relations

[

â~k, â
†

~k′

]

= δ(~k − ~k′) =
[

b̂~k, b̂
†

~k′

]

(5.58)

as well as

[

â~k, â~k′
]

= 0 =
[

â†~k, â
†

~k′

]

, (5.59)
[

b̂~k, b̂~k′
]

= 0 =
[

b̂†~k, b̂
†

~k′

]

, (5.60)
[

â~k, b̂~k′
]

= 0 =
[

â†~k, b̂
†
~k′

]

(5.61)
[

â~k, b̂
†

~k′

]

= 0 =
[

â†~k, b̂~k′
]

(5.62)
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for all ~k,~k′ ∈ R3. Expressed in terms of these ladder operators, the quantum
operators for the total energy and the total momentum are evaluated as

Ĥ =

∫

~ωk

(

â†~kâ~k + b̂~k b̂
†
~k

)

d3k , (5.63)

~̂P =

∫

~~k
(

â†~kâ~k + b̂~k b̂
†

~k

)

d3k . (5.64)

The total charge contained within the Klein-Gordon field corresponds to an
operator as well, which can be obtained from the direct quantization of the ex-
pression (5.34). This yields the charge operator

Q̂ =

∫

d3r
i~

2mc2

[

ϕ̂†(~r, t)
∂

∂t
ϕ̂(~r, t)−

(

∂

∂t
ϕ̂†(~r, t)

)

ϕ̂(~r, t)

]

=

∫

(

â†~kâ~k − b̂~k b̂
†
~k

)

d3k (5.65)

in terms of the above ladder operators. From the expressions (5.63 – 5.65) we
infer that â†~k and â~k respectively represent the creation and annihilation oper-
ators of a particle with positive charge — or, more precisely, with charge q —
that travels with momentum ~~k and has the energy ~ωk, while b̂

†
~k
and b̂~k are the

analogous creation and annihilation operators for the corresponding antiparticle
with charge −q. Note that the latter appear in antinormal order within the above
expressions for the total energy, momentum, and charge operators, with b̂†~k being

executed before b̂~k, while the particle creation and annihilation operators â†~k, â~k
are normally ordered within Eqs. (5.63 – 5.65). Enforcing a normal order also
for the antiparticle operators b̂†~k, b̂~k will give rise to infinite constants within the

expressions (5.63), (5.65) for the total energy and charge, which one can asso-
ciate with the presence of an infinitely extended background “sea” of negatively
charged antiparticles within the universe.

In practice, these constants can be eliminated by a simple redefinition of
the zero levels of energy and charge. They do not have any impact on the time
evolution of the system. Indeed, the Heisenberg equations governing the evolution
of the creation and annihilation operators associated with Klein-Gordon particles
and antiparticles are derived from Eq. (5.63) as

d

dt
â~k(t) =

i

~

[

Ĥ, â~k(t)
]

= −iωkâ~k(t) , (5.66)

d

dt
â†~k(t) =

i

~

[

Ĥ, â†~k(t)
]

= iωkâ
†

~k
(t) , (5.67)

d

dt
b̂~k(t) =

i

~

[

Ĥ, b̂~k(t)
]

= −iωk b̂~k(t) , (5.68)

d

dt
b̂†~k(t) =

i

~

[

Ĥ, b̂†~k(t)
]

= iωk b̂
†
~k
(t) (5.69)
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using the commutation relations [b̂~k′ b̂
†
~k′
, b̂~k] = [b̂†~k′ b̂~k′ , b̂~k] = −δ(~k − ~k′)b̂~k and

[b̂~k′ b̂
†

~k′
, b̂†~k] = [b̂†~k′ b̂~k′, b̂

†

~k
] = δ(~k − ~k′)b̂†~k. Equations (5.66 – 5.69) are solved as

â~k(t) = e−iωktâ~k(0) , (5.70)

â†~k(t) = eiωktâ†~k(0) , (5.71)

b̂~k(t) = e−iωktb̂~k(0) , (5.72)

b̂†~k(t) = eiωktb̂†~k(0) , (5.73)

respectively, which is in perfect consistency with the expression (5.30) for the
general solution of the Klein-Gordon equation.

5.7 The nonrelativistic limit

As it is supposed to represent a relativistic generalization of standard quantum
mechanics, the Klein-Gordon theory has to somehow yield the Schrödinger equa-
tion (3.25) in the formal nonrelativistic limit c → ∞. To evidence this claim,
we first recall that the latter represents a first-order differential equation in time,
whereas the time evolution of the Klein-Gordon equation (5.3) is governed by a
second time derivative alike Newton’s second law (3.4). It appears therefore ap-
propriate to decompose Eq. (5.3) into a set of two first-order differential equations
in time. We could in principle use the Hamiltonian formalism for this purpose,
which would yield two first-order equations for the Klein-Gordon field and its
conjugate “momentum” counterpart in close analogy with Eqs. (4.9) and (4.10).
However, it turns out to be more convenient to operate with complex linear com-
binations of those two fields, which then can be directly associated with the two
wavefunctions that respectively describe the particle and antiparticle components
contained within the Klein-Gordon field.

Let us specifically consider the Klein-Gordon equation (5.15) describing a
charged particle in the presence of an electromagnetic field, which can be written
as

(

DνD
ν +

1

λ2

)

ϕ(x) =

(

D2
0 − ~D2 +

1

λ2

)

ϕ(x) = 0 (5.74)

in a covariant manner. Here, (Dν) = (D0, ~D) represents the four-vector of the
covariant derivative (5.21) with the temporal and spatial components

D0 =
1

c

∂

∂t
+
iq

~c
Φ(~r, t) , (5.75)

~D = ~∇− iq

~c
~A(~r, t) , (5.76)

where (Aν) = (Φ, ~A) is the four-potential that describes the electromagnetic field.



5.7. THE NONRELATIVISTIC LIMIT 63

We now define two complex-valued fields

ϕ±(x) =
1

2
[ϕ(x)± iλD0ϕ(x)] (5.77)

such that we can decompose

ϕ(x) = ϕ+(x) + ϕ−(x) , (5.78)

iλD0ϕ(x) = ϕ+(x)− ϕ−(x) . (5.79)

It is straightforward to show that the temporal covariant derivative of ϕ± satisfies

±iλD0ϕ±(x) = ϕ±(x)−
λ2

2
~D2 [ϕ+(x) + ϕ−(x)] (5.80)

provided ϕ is a solution of Eq. (5.74). This yields a set of two first-order dif-
ferential equations in time which are perfectly equivalent to the Klein-Gordon
equation (5.74). Using λ = ~/(mc), they can be expressed in nonrelativistic
terms as

i~
∂

∂t
ϕ+(~r, t) =

[

mc2 + qΦ(~r, t)
]

ϕ+(~r, t) +
~π2

2m
[ϕ+(~r, t) + ϕ−(~r, t)] ,(5.81)

i~
∂

∂t
ϕ∗
−(~r, t) =

[

mc2 − qΦ(~r, t)
]

ϕ∗
−(~r, t) +

~π∗2

2m

[

ϕ∗
+(~r, t) + ϕ∗

−(~r, t)
]

(5.82)

where we define the kinetic momentum operator and its complex conjugate as

~π =
~

i
~∇− q

c
~A(~r, t) , (5.83)

~π∗ = −
(

~

i
~∇+

q

c
~A(~r, t)

)

, (5.84)

in perfect analogy with the corresponding classical expression (3.35).
Formally, Eqs. (5.81) and (5.82) form a set of two Schrödinger-like equations

that are coupled to each other. Indeed, we recognize within these equations the
same kinetic and potential energy terms that arise also within the nonrelativistic
Schrödinger equation (3.40) describing a particle with charge±q in the presence of
an electromagnetic field. The rest energy E0 = mc2 of the particle under consid-
eration appears as additional contribution to the total energy within Eqs. (5.81)
and (5.82), which appears perfectly logical from a relativistic point of view. As
Eq. (5.82) can effectively be obtained from Eq. (5.81) by inverting the sign of the
charge q, it makes sense to consider ϕ+ to be the wavefunction associated with a
particle of charge q, while ϕ∗

− would be the wavefunction of the corresponding an-
tiparticle with charge −q. This interpretation is indeed confirmed by evaluating
the charge density according to Eq. (5.23). We obtain

ρ(x) =
i~

2mc
[ϕ∗(x)D0ϕ(x)− ϕ(x)(D0ϕ)

∗(x)] = |ϕ+(x)|2 − |ϕ−(x)|2 , (5.85)
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which implies that ϕ+ and ϕ∗
− respectively contribute purely positively and purely

negatively to the total charge.
Let us now specifically elaborate the Schrödinger equation that describes the

time evolution of the wavefunction associated with a Klein-Gordon particle of
charge q in the nonrelativistic limit. To this end, we first eliminate the presence
of the rest energy mc2 within Eq. (5.81) by introducing rescaled wavefunctions
according to

ψ±(~r, t) = ϕ±(~r, t)e
imc2t/~ . (5.86)

This essentially amounts to redefining the zero level of energy, namely such that
a particle with charge q at rest has no energy. The rescaled wavefunctions ψ±

then evolve according to

i~
∂

∂t
ψ+(~r, t) =

(

~π2

2m
+ qΦ(~r, t)

)

ψ+(~r, t) +
~π2

2m
ψ−(~r, t) , (5.87)

−i~ ∂
∂t
ψ−(~r, t) =

(

~π2

2m
− qΦ(~r, t)

)

ψ−(~r, t) +
~π2

2m
ψ+(~r, t)

+2mc2ψ−(~r, t) . (5.88)

Equation (5.88) can be rewritten as

ψ−(~r, t) = −
~π2

4m2c2
ψ+(~r, t) +

1

2mc2

(

−i~ ∂
∂t
− ~π2

2m
− qΦ(~r, t)

)

ψ−(~r, t) (5.89)

and is formally solved by recursively replacing ψ−(~r, t) on the right-hand side
of Eq. (5.89) with the entire self-consistent expression (5.89) for ψ−(~r, t). This
yields the series

ψ−(~r, t) = − ~π2

4m2c2
ψ+(~r, t)

+
1

2mc2

(

−i~ ∂
∂t
− ~π2

2m
− qΦ(~r, t)

)(

− ~π2

4m2c2
ψ+(~r, t)

)

+

[

1

2mc2

(

−i~ ∂
∂t
− ~π2

2m
− qΦ(~r, t)

)]2(

− ~π2

4m2c2
ψ+(~r, t)

)

+ . . . , (5.90)

where the terms in the first, second, and third line of Eq. (5.90) scale as 1/c2,
1/c4, and 1/c6, respectively, provided ψ+(~r, t) does not exhibit any particular
scaling with c (which holds, e.g., if we start the time evolution with a vanishing
antiparticle component, i.e., we have ψ−(~r, t0) = 0 for all ~r at the initial time t0).
Inserting this expression (5.90) into Eq. (5.87) finally yields

i~
∂

∂t
ψ+(~r, t) =

(

~π2

2m
− ~π4

8m3c2
+ qΦ(~r, t)

)

ψ+(~r, t) +O
(

1/c4
)

(5.91)
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up to corrections that scale as 1/c4. The wavefunction ψ+ therefore evolves in
the nonrelativistic limit c → ∞ according to the Schrödinger equation (3.40)
that describes a quantum particle with charge q in the presence of an electro-
magnetic field. The additional term ∝ ~π4 arising within Eq. (5.91) corresponds
to a relativistic correction to the kinetic energy, which is perfectly consistent
with the second-order term in the nonrelativistic expansion (3.29) of the energy-
momentum relation. As ψ− scales at most as 1/c2 according to Eq. (5.90), the
charge density (5.85) is given by

ρ(~r, t) = |ψ+(~r, t)|2 +O
(

1/c4
)

(5.92)

and can therefore be identified with the probability density that results from the
wavefunction ψ+, up to corrections of the order of 1/c4.

The Schrödinger equation that describes the time evolution of the wavefunc-
tion ϕ∗

− associated with the corresponding antiparticle can be obtained in a per-
fectly analogous manner. We start by performing the rescaling procedure

ψ̃∗
±(~r, t) = ϕ∗

±(~r, t)e
imc2t/~ , (5.93)

which effectively amounts to redefining the zero level of energy such that an
antiparticle with charge −q at rest has no energy. Equations (5.81) and (5.82)
are then rewritten as

i~
∂

∂t
ψ̃∗
−(~r, t) =

(

~π∗2

2m
− qΦ(~r, t)

)

ψ̃∗
−(~r, t) +

~π∗2

2m
ψ̃∗
+(~r, t) , (5.94)

−i~ ∂
∂t
ψ̃∗
+(~r, t) =

(

~π∗2

2m
+ qΦ(~r, t)

)

ψ̃∗
+(~r, t) +

~π∗2

2m
ψ̃∗
−(~r, t)

+2mc2ψ̃∗
+(~r, t) . (5.95)

in terms of these rescaled wavefunctions ψ̃∗
±. Equation (5.95) is formally solved

as

ψ̃∗
+(~r, t) = −

~π∗2

4m2c2
ψ̃∗
−(~r, t) +O

(

1/c4
)

(5.96)

up to corrections that scale as 1/c4, provided ψ̃∗
− does not exhibit any particular

scaling with c. Inserting this latter expression (5.96) into Eq. (5.94) yields the
modified Schrödinger equation

i~
∂

∂t
ψ̃∗
−(~r, t) =

(

~π∗2

2m
− ~π∗4

8m3c2
− qΦ(~r, t)

)

ψ̃∗
−(~r, t) +O

(

1/c4
)

, (5.97)

which can formally be obtained from Eq. (5.91) by inverting the sign of the
charge. Correspondingly, the charge density (5.85) is now given by

ρ(~r, t) = −
∣

∣

∣
ψ̃∗
−(~r, t)

∣

∣

∣

2

+O
(

1/c4
)

, (5.98)

which is consistent with the assertion that |ψ̃∗
−(~r, t)|2 represents the probability

density of the antiparticle.
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Chapter 6

The Dirac theory

6.1 Construction of the theory

Despite the fact that it contains the Schrödinger equation in the nonrelativistic
limit, the Klein-Gordon theory falls short of describing an electron. Indeed, it
can be evaluated that the Klein-Gordon equation does not correctly reproduce
the relativistic fine-structure corrections to the spectrum of the hydrogen atom,
which can be attributed to the fact that the electron spin and its interaction
with a magnetic field do not emerge from this theory. From a more conceptual
point of view, a major drawback of the Klein-Gordon equation is that it fails
to deliver a conservation law for a probability as requested by the concept of
a wavefunction, since it represents a second-order differential equation in time
which, as we discussed in Section 5.2, does not allow for deriving a continuity
equation that involves a positive definite density. Such a conservation law can be
approximately established in the nonrelativistic regime [see Eq. (5.92)] but is no
intrinsic property of the theory.

To remedy this shortcoming, Paul Dirac had the ingenious idea to seek a
square root of the Klein-Gordon operator ∂ν∂

ν + λ−2, which by construction
would yield a first-order differential equation in time. While this would be im-
possible to achieve in the framework of a commutative algebra, such a square root
can indeed be defined using non-commuting matrices instead of ordinary real or
complex numbers as prefactors of the involved derivative operators. This implies
that the wavefunction ψ of the relativistic particle would have to exhibit several
components, i.e. ψ ≡ (ψ1, . . . , ψN)

T with N > 1, which would be coupled with
each other in the course of the time evolution that is generated by the resulting
differential equation.

In practice, this amounts to stating that the wavefunction evolves according
to a multi-component linear differential equation which contains at most a first-
order derivative in time. Three basic requirements are formulated in order to
construct that equation and to determine the dimension N of the vector space in

67
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which the wavefunction is defined, namely:

(a) Relativistic covariance must be respected by this equation.

(b) Since ψ is supposed to be a wavefunction in the sense of Schrödinger, a
conservation law for the total probability must follow from this equation,
where the probability density is given by

ρ(~r, t) =
N
∑

s=1

|ψs(~r, t)|2 . (6.1)

(c) Each component ψs of the wavefunction must fulfill the Klein-Gordon equa-
tion (5.3), i.e.

(

1

c2
∂2

∂t2
−∆+

1

λ2

)

ψs(~r, t) = 0 (6.2)

with λ = ~/(mc).

It straightforwardly follows from the requirement (a) that the equation to be
constructed contains at most first-order derivatives with respect to the spatial
coordinates. Indeed, if we had a second-order spatial derivative operator in this
equation, a Lorentz boost to a moving reference frame would then give rise to
second-order temporal derivatives as well, which would then imply that the equa-
tion would not have the same form in every inertial frame, in contradiction to the
basic principle of relativity. Consequently, we can explicitly write this differntial
equation through the most general ansatz

1

c

∂

∂t
ψs(~r, t) +

3
∑

l=1

N
∑

s′=1

αl
ss′

∂

∂rl
ψs′(~r, t) +

N
∑

s′=1

Γss′ψs′(~r, t) = 0 (6.3)

with some constants αl
ss′,Γss′ ∈ C that are yet to be determined, or equivalently

i~
∂

∂t
ψs(~r, t) =

~c

i

3
∑

l=1

N
∑

s′=1

αl
ss′

∂

∂rl
ψs′(~r, t) + E0

N
∑

s′=1

βss′ψs′(~r, t) (6.4)

where we identify ~cΓss′ = iE0βss′ with E0 being a real-valued energy. The
coefficients βss′ are then dimensionless, as are the coefficients αl

ss′. We can group
them in the N × N matrices αl ≡ (αl

ss′)N×N and β = (βss′)N×N . Defining by
~α ≡ (α1, α2, α3) an object that can be colloquially interpreted as a spatial vector
of N × N matrices, even though it does not undergo any transformation under
rotations or mirror operations of the spatial coordinate system, we can rewrite
Eq. (6.4) in a more compact manner as

i~
∂

∂t
ψ(~r, t) = c~α · ~̂pψ(~r, t) + E0βψ(~r, t) (6.5)
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with p̂ = −i~~∇ the momentum operator and ~α · ~̂p ≡∑3
l=1 α

lp̂l.

In view of the requirement (b), we now determine the conditions under which
a continuity equation

∂

∂t
ρ(~r, t) + ~∇ ·~j(~r, t) = 0 (6.6)

describing the conservation of the total probability can be derived from Eq. (6.4),
with the probability density being given by the expression (6.1). Deriving this
latter expression with respect to time yields

∂

∂t
ρ(~r, t) =

N
∑

s=1

[

ψ∗
s(~r, t)

∂

∂t
ψs(~r, t) + ψs(~r, t)

∂

∂t
ψ∗
s (~r, t)

]

= −c
3
∑

l=1

N
∑

s,s′=1

[

ψ∗
s(~r, t)α

l
ss′

∂

∂rl
ψs′(~r, t) + ψs(~r, t)(α

l
ss′)

∗ ∂

∂rl
ψ∗
s′(~r, t)

]

− i
~
E0

N
∑

s,s′=1

[ψ∗
s (~r, t)βss′ψs′(~r, t)− ψs(~r, t)β

∗
ss′ψ

∗
s′(~r, t)] (6.7)

in combination with Eq. (6.4). This equation is equivalent to the continuity
equation (6.6) if and only if βss′ = β∗

s′s and αl
ss′ = (αl

s′s)
∗ for all s, s′ = 1, . . . , N

and l = 1, 2, 3, i.e. if the matrices β, α1, α2, and α3 are all hermitian. The
probability current density ~j = (j1, j2, j3) appearing in Eq. (6.6) is then given by
the components

jl(~r, t) = c
N
∑

s,s′=1

ψs(~r, t)α
l
ss′ψs′(~r, t) (6.8)

and can be most compactly expressed as

~j(~r, t) = cψ†(~r, t)~αψ(~r, t) (6.9)

where we introduce by ψ† = (ψ∗
1 , . . . , ψ

∗
N ) the hermitian conjugate of the wave-

function ψ.

Finally, to verify under which conditions the requirement (c) is valid, we
apply an additional time derivative to Eq. (6.4) and use this equation recursively
in order to eliminate the resulting time derivatives on its right-hand side. This
yields

1

c2
∂2

∂t2
ψs(~r, t) =

N
∑

s′,s′′=1

[

3
∑

l,l′=1

αl
ss′α

l′

s′s′′
∂2

∂rl∂r
′
l

− E2
0

~2c2
βss′βs′s′′

+
iE0

~c

3
∑

l=1

(

αl
ss′βs′s′′ + βss′α

l
s′s′′

) ∂

∂rl

]

ψs′′(~r, t) . (6.10)
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Choosing E0 = mc2 as natural energy scale for a particle with mass m, it is
straightforward to figure out that this latter equation is equivalent to the Klein-
Gordon equation (6.2) if and only if the matrices β and αl for l = 1, 2, 3 fulfill
the conditions

N
∑

s′=1

(

αl
ss′βs′s′′ + βss′α

l
s′s′′

)

= 0 , (6.11)

N
∑

s′=1

βss′βs′s′′ = δss′ , (6.12)

N
∑

s′=1

(

αl
ss′α

l′

s′s′′ + αl′

ss′α
l
s′s′′

)

= 2δll′δss′ (6.13)

for all l, l′ = 1, 2, 3 and all s, s′′ = 1, . . . , N , where for the last condition (6.13) we
implicitly assume that the wavefunction ψ be twice continuously differentiable
with respect to its spatial coordinates, such that the order in which the second
derivatives with respect to rl and rl′ are taken in Eq. (6.10) does not matter.
Equations (6.11–6.13) are rewritten in matrix notation as

αlβ + βαl = 0 , (6.14)

ββ = IN×N , (6.15)

αlαl′ + αl′αl = 2δll′IN×N (6.16)

with IN×N denoting the N ×N unit matrix — or, more compactly,

αlαl′ + αl′αl = 2δll′IN×N (6.17)

for all l, l′ = 0, 1, 2, 3 where we formally define α0 ≡ β.
Setting l′ = l in Eq. (6.17) yields

αlαl = IN×N , (6.18)

which implies that the matrices αl are square roots of the N × N unit matrix.
They can therefore have the eigenvalues +1 and −1, which becomes obvious when
representing this matrix equation in the eigenbasis of αl. Different matrices αl, αl′

anticommute with each other, since we obtain from Eq. (6.17)

αlαl′ + αl′αl = 0 (6.19)

for l 6= l′. Multiplying this latter equation (6.19) onto αl′ and taking the trace
of the resulting matrix equation, where we use the cyclic relation Tr[αl′αlαl′] =
Tr[αl′αl′αl] as well as the identity (6.18) evaluated for l = l′, we obtain the
insight that the matrices αl are traceless, i.e. Tr[αl] = 0 for all l = 0, 1, 2, , 3. In
combination with the fact that they are diagonalisable (as they are hermitian) and
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can have the eigenvalues ±1, we can infer from this property that the dimension
N of the vector space in which the wavefunction is defined must be an even

number, such that αl has N/2 eigenvalues +1 and N/2 eigenvalues −1.
To summarize, the partial differential equation (6.5) fulfils the requirements

(b) and (c) if and only if the involved matrices αl and β are hermitian, represent
square roots of the unit matrix, and anticommute with each other. We note
that these properties as well as the expressions (6.1) and (6.9) for the probability
density and its associated flux are invariant under unitary transformations

ψ 7→ Uψ , (6.20)

ψ† 7→ ψ†U † , (6.21)

αl 7→ UαlU † , (6.22)

β 7→ UβU † (6.23)

for U ∈ SU(N), satisfying U †U = IN×N . As we show below, this intrinsic
ambiguity in the choice of the matrices can be exploited in order to facilitate the
task of determining a specific representation of the evolution equation (6.5).

6.2 The Majorana equation

As we inferred in the previous section, the dimension N of the vector space
in which the wavefunction is defined has to be an even number. The simplest
possible choice for this dimension is therefore N = 2, in which case we are left
with the task of determining four 2 × 2 matrices. In view of the above unitary
ambiguity expressed by the equations (6.20–6.23), we can opt for a representation
in which one of those matrices, say α3, is diagonal and reads

α3 =

(

1 0
0 −1

)

. (6.24)

Being hermitian and traceless, the other matrices are then most generally ex-
pressed as

αl =

(

al bl
b∗l −al

)

(6.25)

for l < 3, with al ∈ R and bl ∈ C. The anticommutation of those matrices with
α3 yields the relation

(

0 0
0 0

)

= αlα3 + α3αl =

(

2al 0
0 2al

)

, (6.26)

from which we infer al = 0. Since the eigenvalues of all αl matrices are ±1, we
have −1 = detαl = −|bl|2, which implies |bl| = 1.
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We now exploit one more freedom that is still left in the choice of the unitary
basis in which these matrices are represented, namely concerning the phases of
the eigenvectors of α3. Specifically, we can opt for mulitplying those eigenvectors
with suitable phase factors exp(iϕj) (with j = 1, 2) which are such that we have
b1 = 1, i.e.

α1 =

(

0 1
1 0

)

. (6.27)

The anticommutation of α1 and α2 according to Eq. (6.19) straightforwardly
yields b2 + b∗2 = 0, which leaves us with the possibilities b2 = i or −i. Choosing
this second option for b2, we finally obtain the Pauli matrices ~α = ~σ = (σ1, σ2, σ3)
defined by

σ1 =

(

0 1
1 0

)

, σ2 =

(

0 −i
i 0

)

, σ3 =

(

1 0
0 −1

)

, (6.28)

which satisfy the cyclic relations σ1σ2 = iσ3, σ2σ3 = iσ1, and σ3σ1 = iσ2.
While α1, α2, and α3 are now well defined, there is no option left for choosing

β such that it anticommutes with the other matrices. The choice N = 2 for
the dimension of the vector space is therefore insufficient for representing the
wavefunction. An exception arises if particle under consideration has no mass,
which implies E0 = mc2 = 0. In this latter case, we obtain theMajorana equation

i~
∂

∂t
ψ(~r, t) = c~α · ~̂pψ(~r, t) (6.29)

with the most general choice αl = ±UσlU † for l = 1, 2, 3 where U ∈ SU(2) is
a unitary matrix. For a long time, neutrinos were believed to be massless and
evolve according to such a Majorana equation. This hypothesis was recently ruled
out through the detection of neutrino oscillations.

6.3 The Dirac equation

As N = 2 does not work out for massive particles, the next possible choice for the
dimension of the vector space in view of the requirement that it has to be an even
number is N = 4, which implies that β, α1, α2, and α3 are 4 × 4 matrices. As
in the previous section, we opt for a representation in which one of the matrices,
this time β, is diagonal. Recalling that it has the eigenvalues 1, 1, −1, −1, we
write it in block notation as

β =

(

I O

O −I

)

(6.30)

with the 2× 2 unit and zero matrices

I ≡ I2×2 =

(

1 0
0 1

)

, O ≡ O2×2 =

(

0 0
0 0

)

. (6.31)
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For the (hermitian) matrices αl we make the general ansatz

αl =

(

al bl
b†l cl

)

(6.32)

with al, bl, cl ∈ C2×2 for l = 1, 2, 3. The anticommutation property (6.14) yields
(

O O

O O

)

= αlβ + βαl =

(

2al O

O −2cl

)

, (6.33)

from which we infer al = cl = O for l = 1, 2, 3. Mutual anticommutation of the
αl matrices according to Eq. (6.16) yields the relation

2δll′

(

I O

O I

)

= αlαl′ + αl′αl =

(

blb
†
l′ + bl′b

†
l O

O b†l bl′ + b†l′bl

)

(6.34)

for l, l′ = 1, 2, 3, which implies the properties

b†l bl′ + b†l′bl = blb
†
l′ + bl′b

†
l = 2δll′I (6.35)

for the bl matrices. The latter are unitary, as is inferred from setting l′ = l in the
above equation.

The fact that we can perform independent unitary basis transformations
within the upper and lower 2 × 2 block without altering the form (6.30) of the
matrix β gives us a lot of freedom to choose the matrices bl. In particular, we can
choose them to be the Pauli matrices (6.28), i.e. bl = σl for all l = 1, 2, 3, which
obviously satisfy the relations (6.35). This gives rise to the so-called standard or
Dirac representation of the Dirac equation

i~
∂

∂t
ψ(~r, t) = c~α · ~̂pψ(~r, t) +mc2βψ(~r, t) (6.36)

with ~α ≡ (α1, α2, α3), which is defined in terms of the matrices

β =

(

I O

O −I

)

=









1 0 0 0
0 1 0 0
0 0 −1 0
0 0 0 −1









(6.37)

and

αl =

(

O σl
σl O

)

(6.38)

for l = 1, 2, 3, i.e.

α1 =









0 0 0 1
0 0 1 0
0 1 0 0
1 0 0 0









, α2 =









0 0 0 −i
0 0 i 0
0 −i 0 0
i 0 0 0









, α3 =









0 0 1 0
0 0 0 −1
1 0 0 0
0 −1 0 0









.
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Note that all other possible choices for the matrices β, α1, α2, and α3 correspond
to representations that are equivalent to the above standard representation in
the sense that they can be obtained from the latter via the application of unitary
transformations. If we subject, for instance, the wavefunction to the transforma-
tion ψ 7→ Uψ with the unitary matrix

U =
1√
2

(

I I

I −I

)

= U † = U−1 , (6.39)

the subsequent transformations β 7→ UβU † and αl 7→ UαlU † for l = 1, 2, 3 give
rise to the so-called chiral or Weyl representation defined by the choice

αl =

(

σl O

O −σl

)

(6.40)

for l = 1, 2, 3 and

β =

(

O I

I O

)

. (6.41)

6.4 Relativistic covariance

The Dirac equation (6.36) in the above standard or Weyl representations obvi-
ously fulfils the requirements (b) and (c) that we formulated at the beginning of
Section 6.1 for the differential equation to be constructed. As far as the require-
ment (a) is concerned, we inferred from it that this equation must contain at
most first-order spatial derivatives, which is a necessary condition for relativistic
covariance to hold. However, this latter property was not yet fully demonstrated,
i.e., we do not yet know if Eq. (6.36) has the same form in every intertial frame.

Technically, it is not very complicated to reformulate Eq. (6.36) such that it
acquires a covariant appearance. We introduce to this end a set of four matrices
(γν) ≡ (γ0, γ1, γ2, γ3) which are defined as

γ0 = β , (6.42)

γl = βαl (6.43)

for l = 1, 2, 3, such that they read

γ0 =

(

I O

O −I

)

and γl =

(

O σl
−σl O

)

. (6.44)

for l = 1, 2, 3 in the standard representation, and which form what one could col-
loquially call a four-vector of matrices. Multiplying the matrix β onto Eq. (6.36)
and dividing it by c yields then a relativistic formulation

(i~γν∂ν −mc)ψ(x) = 0 (6.45)
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of the Dirac equation. Note, however, that this latter equation does not represent
a Lorentz scalar as it looks like, simply because the “four-vector” (γν) does not
undergo any modification under Lorentz transformations, in agreement with the
requirement that the Dirac equation ought to have the same form in every inertial
frame.

Nevertheless, the matrices γν play a key role in the discussion of the relativistic
covariance of the Direac equation, and it is useful for this purpose to evaluate their
basic commutation and anticommutation rules. Using their definitions (6.42) and
(6.43), we obtain in combination with the anticommutation properties (6.17) of
the matrices αl and β the relations

γ0γl ± γlγ0 = αl ∓ αl , (6.46)

γkγl ± γlγk = −(αkαl ± αlαk) (6.47)

for all k, l = 1, 2, 3. This yields the anticommutation and commutation rules

{γν , γµ} ≡ γνγµ + γµγν = 2gµνI4×4 , (6.48)

[γν , γµ] ≡ γνγµ − γµγν = 2iσνµ (6.49)

for all µ, ν = 0, 1, 2, 3, with the 4 × 4 matrices σµν = −σνµ being defined as
σ00 = O4×4,

σ0l = iαl , (6.50)

σkl = − i
2
[αk, αl] (6.51)

for all k, l = 1, 2, 3. Using the well-known commutation rules [σk, σl] = 2iǫklmσm
for the Pauli matrices (6.28) with ǫklm the Levi-Civita symbol (2.9), we can
explicitly evaluate those matrices in the standard representation of the Dirac
equation as

σ0l = i

(

O σl
σl O

)

and σkl = ǫklm

(

σm O

O σm

)

(6.52)

for all k, l = 1, 2, 3.
The problem of relativistic covariance is solved by admitting that the wave-

function ψ may change under Lorentz transformations. To work this out, let us
consider a general Lorentz transformation eν 7→ e′ν = D µ

ν eµ of the basis of the
Minkowski space, with the transformation matrix D = (D µ

ν ) ∈ G that satisfies
gDTgD = 1 or, equivalently,

Dν
ρD

ρ
µ = δνµ . (6.53)

We assume that the wavefunction correspondingly undergoes the linear transfor-
mation

ψ 7→ ψ′ = Sψ (6.54)
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with the invertible matrix S ∈ C4×4. Requiring relativistic covariance implies
that ψ′ evolves according to the transformed Dirac equation

(i~γν∂′ν −mc)ψ′(x) = 0 , (6.55)

with
∂′ν = D µ

ν ∂µ (6.56)

the transformed partial derivative operators, if and only if the original wavefunc-
tion ψ satisfies Eq. (6.45). Multiplying S−1 onto Eq. (6.55) yields with Eqs. (6.54)
and (6.56)

(

i~S−1γνSD µ
ν ∂µ −mc

)

ψ(x) = 0 , (6.57)

which is identical to the original Dirac equation (6.45) if and only if

S−1γνSD µ
ν = γµ , (6.58)

or equivalently, using Eq. (6.53),

S−1γνS = Dν
µγ

µ . (6.59)

Let us now focus more specifically on proper Lorentz transformations D ∈
L which can, as was discussed in Section 1.2, be expressed as a succession of
infinitesimal transformations. In view of Eq. (1.40) we can therefore write

D = exp(τI) (6.60)

for some real parameter τ ∈ R and some generating matrix I ∈ R4×4. Inserting
this expression into the relation (6.53), taking the derivative of the resulting
equation with respect to τ , and evaluating it at τ = 0 yields the relation

Iνµ + Iµν = 0 , (6.61)

which implies that the generator I corresponds to an antisymmetric tensor. The
corresponding ansatz

S = exp(τA) (6.62)

with A ∈ C4×4 can be made for the transformation matrix of the wavefunction,
since we most naturally require that an infinitesimal Lorentz transformation can
only result in an infinitesimal change of the wavefunction. Equation (6.59) is
then rewritten as

e−τAγνeτA =
(

eτI
)ν

µ
γµ . (6.63)

Taking the derivative of this latter equation with respect to τ and evaluating it
at τ = 0 yields the relation

γνA− Aγν = Iνµγ
µ (6.64)
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between the generators I and A.
In order to explicitly solve this equation for A, we rewrite its right-hand side

as

Iνµγ
µ = gνσIσµγ

µ =
1

2
(gνσIσµγ

µ + gνµIµσγ
σ)

=
1

2
Iσµ (g

νσγµ − γσgνµ)

=
1

4
Iσµ ({γν , γσ} γµ − γσ {γν , γµ})

=
1

4
Iσµ (γ

νγσγµ − γσγµγν) , (6.65)

using the antisymmetry property (6.61) and the anticommutation rules (6.48).
We therefore infer that we have to choose

A =
1

4
Iνµγ

νγµ =
1

8
Iνµ (γ

νγµ − γµγν) = − i
4
Iνµσ

νµ (6.66)

in order to satisfy the relation (6.64), where we use again Eq. (6.61) as well as
the expression (6.49) for the commutation rules of the matrices γν and γµ. The
transformation matrix (6.62) is then written as

S = exp
(τ

4
Iνµγ

νγµ
)

= exp
(

−iτ
4
Iνµσ

νµ
)

. (6.67)

Wavefunction vectors ψ ∈ C4 that are transformed according to ψ 7→ ψ′ = Sψ
with the above matrix S in the presence of a proper Lorentz transformation (6.60)
will be called Dirac spinors in the following.

Let us now explicitly evaluate this transformation for the basic generators
I = −Il and −Jl that correspond to rotations and boosts, respectively. According
to Eq. (1.31), a rotation about the axis l = 1, 2, 3 of the spatial coordinate system
is generated by the matrix I = −Il = (Iνµ) with the elements

Iνµ = ǫjklδ
ν
j δ

k
µ , (6.68)

where ǫjkl represents again the Levi-Civita tensor (2.9) (and where a sum is
implicitly performed over the spatial indices j, k = 1, 2, 3). The covariant com-
ponents of the associated tensor of second order are constructed as

Iνµ = gναI
α
µ = −ǫjklδjνδkµ , (6.69)

since gjα = −δjα for j = 1, 2, 3. We then obtain from Eq. (6.66)

A =
i

4
ǫjklσ

jk =
1

8
ǫjkl[α

j, αk] (6.70)
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with the help of the expression (6.51) for σjk, which explicitly reads

A =
i

2

(

σl O

O σl

)

(6.71)

in the standard representation, using ǫjklǫjkm = 2δlm for all l, m = 1, 2, 3 (with
implicit summation over j, k = 1, 2, 3). The exponential of this matrix is straight-
forwardly calculated using the property σ2

l = I for all l = 1, 2, 3 and hence σ2k
l = I

and σ2k+1
l = σl for all integer k ∈ N0. We therefore obtain

exp
(

i
τ

2
σl

)

= cos(τ/2)I+ i sin(τ/2)σl , (6.72)

from which we infer the transformation matrix

S = eτA = cos(τ/2)

(

I O

O I

)

+ i sin(τ/2)

(

σl O

O σl

)

(6.73)

in the standard representation. A rotation of the coordinate system about a given
axis gives then rise to separate unitary mixings of the two upper and the two lower
coordinates of the Dirac spinor, generated by the Pauli matrix that corresponds
to this axis. This is already a first indication that those two components are to
be associated with the two spin states of the fermionic elementary particle under
consideration.

Accroding to Eqs. (1.37) and (1.39), a boost along the axis l = 1, 2, 3 is
generated by the matrix I = −Jl = (Iνµ) with the elements

Iνµ = −δν0δlµ − δνl δ0µ . (6.74)

We therefore have
Iνµ = gναI

α
µ = δlνδ

0
µ − δ0νδlµ , (6.75)

since g0α = δ0α and gjα = −δjα for j = 1, 2, 3. The generator of the corresponding
transformation of the Dirac spinor is then given by

A = − i
4

(

σl0 − σ0l
)

= −1
2
αl (6.76)

using the expression (6.50) for σ0l, which reads in the standard representation

A = −1
2

(

O σl
σl O

)

. (6.77)

Using αlαl = I4×4 we obtain the transformation matrix

S = eτA = cosh(τ/2)

(

I O

O I

)

− sinh(τ/2)

(

O σl
σl O

)

(6.78)



6.4. RELATIVISTIC COVARIANCE 79

for the Dirac spinor in the standard representation. A Lorentz transformation to
a moving inertial frame gives therefore rise to a non-unitary mixing of the upper
and lower two-component blocks of the Dirac spinor.

Evidently, the above transformation law for Dirac spinors, as expressed by the
matrix (6.67), can become rather involved for more general Lorentz transforma-
tions and lacks the transparency and simplicity of Lorentz vectors or tensors that
we introduced in Section 2.1. It is to be noted, however, that the latter notions
can indeed be restored in the framework of the Dirac equation, and expressed in
terms of the matrices γν as we were tempted to do so in the beginning of this
section, namely by introducing the concept of the adjoint spinor. We first point
out, to this end, that the commutator (6.49) of the matrices γν and γµ satisfies
the property

(σνµ)† γ0 − γ0σνµ = 0 (6.79)

for all ν, µ = 0, 1, 2, 3, which can be shown from the expressions (6.50) and (6.51),
the hermiticity of the matrices αl = (αl)†, as well as their anticommutation with
the matrix β = γ0. From Eq. (6.79) we infer

A†γ0 = −γ0A (6.80)

for the matrix (6.66) that generates the transformation S of the Dirac spinor
according to Eq. (6.62), and hence

exp
(

τA†
)

γ0 =
∞
∑

k=0

τk

k!

(

A†
)k
γ0 = γ0

∞
∑

k=0

τk

k!
(−A)k = γ0 exp (−τA) . (6.81)

The adjoint spinor is then defined by the complex line vector

ψ̄ ≡
(

ψ̄1, ψ̄2, ψ̄3, ψ̄4

)

= ψ†γ0 . (6.82)

Owing to Eq. (6.81) it is transformed according to

ψ̄ 7→ ψ†S†γ0 = ψ†γ0S−1 = ψ̄S−1 (6.83)

under Lorentz transformations that induce the mapping ψ 7→ Sψ of the Dirac
spinor. Hence, we obtain by means of Eq. (6.59) the transformation laws

ψ̄γνψ 7→ ψ̄S−1γνSψ = Dν
µψ̄γ

µψ (6.84)

for all ν = 0, 1, 2, 3 as well as, with a similar reasoning,

ψ̄γν1 · · · γνNψ 7→ Dν1
µ1
· · ·DνN

µN
ψ̄γµ1 · · · γµNψ (6.85)

for all ν1, . . . , νN . Those two expressions (6.84) and (6.85) therefore represent a
Lorentz vector and a Lorentz tensor of Nth order, respectively. A Lorentz scalar
is obtained by ψ̄ψ since we have

ψ̄ψ 7→ ψ̄S−1Sψ = ψ̄ψ . (6.86)

In the standard representation, this particularly implies that not the probabil-
ity density (6.1) but rather the expression |ψ1(~r, t)|2 + |ψ2(~r, t)|2 − |ψ3(~r, t)|2 −
|ψ4(~r, t)|2 is invariant under Lorentz transformations.
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6.5 Conservation laws

Thanks to the adjoint spinor (6.82) it is now straightforward to formulate conser-
vation laws in terms of continuity equations that involve relativistically covariant
four-currents. The continuity equation (6.6) describing the conservation of the
total probability can be rewritten as

∂νj
ν(x) = 0 (6.87)

in a covariant manner, where according to Eqs. (6.1) and (6.9) we have the
probability density

ρ(~r, t) =
1

c
j0(~r, t) = ψ†(~r, t)ψ(~r, t) = ψ̄(~r, t)γ0ψ(~r, t) (6.88)

and the associated current density components

jl(~r, t) = cψ†(~r, t)αlψ(~r, t) = cψ̄(~r, t)γlψ(~r, t) (6.89)

using γl = γ0αl. This yields the covariant expression

jν(x) = cψ̄(x)γνψ(x) (6.90)

for the four-current describing the conservation of probability.
As usual for relativistic theories, the conservation of energy and momentum

in the framework of the Dirac equation is described by an energy-momentum
tensor. Its components are written as

T νµ(x) =
i~c

2

[

ψ̄(x)γµ (∂νψ) (x)−
(

∂νψ̄
)

(x)γµψ(x)
]

, (6.91)

as can be derived from a Lagrangian formulation of this theory. The energy
density contained within the Dirac spinor ψ is evaluated as

T 00(~r, t) =
i~

2

[

ψ†(~r, t)
∂

∂t
ψ(~r, t)−

(

∂

∂t
ψ†(~r, t)

)

ψ(~r, t)

]

=
c

2

[

ψ†(~r, t)~α · ~̂pψ(~r, t) +
(

~̂pψ(~r, t)
)†

· ~αψ(~r, t)
]

+mc2ψ†(~r, t)βψ(~r, t) , (6.92)

where we use the fact that ψ satisfies the Dirac equation (6.36). This expression

is perfectly consistent with the Dirac Hamiltonian Ĥ = c~α· ~̂p+mc2β appearing on
the right-hand side of Eq. (6.36) and can be identified with the expectation value

of the symmetrized (and therefore hermitian) operator [Ĥδ(~̂r−~r)+ δ(~̂r−~r)Ĥ]/2
with respect to the wavefunction ψ. Similarly, the components of the momentum
density are evaluated as

T l0(~r, t) =
1

2

[

ψ†(~r, t)p̂lψ(~r, t) +
(

p̂lψ
†(~r, t)

)

ψ(~r, t)
]

, (6.93)
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corresponding to the expectation value of [p̂lδ(~̂r−~r)+δ(~̂r−~r)p̂l]/2. The continuity
equations

∂µT
νµ(x) = 0 (6.94)

for ν = 0, 1, 2, 3 can be straightforwardly obtained from the covariant formulation
(6.45) of the Dirac equation and its counterpart for the adjoint spinor. The latter
reads

i~∂νψ̄γ
ν +mcψ̄(x) = 0 , (6.95)

as is shown from the hermitian conjugation of the Dirac equation (6.45) in com-
bination with the property (γν)†γ0 = γ0γν for all ν = 0, 1, 2, 3.

As it contains spatiotemporal derivatives, the expression (6.91) for the energy-
momentum tensor of the Dirac theory will change if the (charged) particle de-
scribed by this theory is exposed to an electromagnetic field. The latter is, as
usual, represented in terms of the four-potential (Aν) ≡ (Φ, ~A) which is incorpo-
rated into the Dirac equation through the minimal coupling procedure ∂ν 7→ Dν

giving rise to the covariant derivative

Dν = ∂ν +
iq

~c
Aν(x) . (6.96)

This yields the modified Dirac equation

(i~γνDν −mc)ψ(x) = 0 , (6.97)

which reads in nonrelativistic terms

i~
∂

∂t
ψ(~r, t) = c~α · ~̂πψ(~r, t) +mc2βψ(~r, t) + qΦ(~r, t)ψ(~r, t) , (6.98)

where we use again the kinetic momentum operator

~̂π =
~

i
~∇− q

c
~A(~r, t) . (6.99)

Consequently, we obtain the accordingly modified energy-momentum tensor

T νµ(x) =
i~c

2

[

ψ̄(x)γµ (Dνψ) (x)−
(

Dνψ
)

(x)γµψ(x)
]

(6.100)

with Dνψ ≡ (Dν)∗ψ̄ = [∂ν − (iq/~c)Aν ]ψ̄. Note that the latter does no longer
satisfy the continuity equations (6.94) since the energy and the momentum of the
particle are not necessarily conserved in the presence of an electromagnetic field
but can be exchanged with the latter. More precisely, we obtain from Eq. (6.100)

∂µT
νµ(x) = q [∂νAµ(x)− ∂µAν(x)] ψ̄(x)γµψ(x) =

q

c
F νµ(x)jµ(x) (6.101)

using the expressions (6.90) for the four-current and (2.25) for the electromagnetic
field tensor. This equation for the energy-momentum balance is precisely com-
pensated by the analogous equation (2.45) for the electromagnetic field, which
means that the total energy and momentum contained within the particle and
the electromagnetic field are well conserved.
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6.6 Plane waves

More insight into the physical nature of the Dirac spinor and its components is
obtained from the general solution of the Dirac equation (6.36) in the absence of
electromagnetic fields. To facilitate the interpretation of the results, we calculate
this solution in the presence of a normalization volume corresponding to a cube
of length L with periodic boundary conditions. The Fourier series expansion of
the Dirac spinor is then written as

ψ(~r, t) =
1√
V

∑

~k

ψ̃~k(t)e
i~k·~r (6.102)

with V = L3, where the summation involves all possible wave vectors ~k for which
the corresponding plane wave exp(i~k · ~r) fulfils the periodic bounday conditions,

i.e., ~k = (2π/L)~l for all ~l ∈ Z. The application of the momentum operator

~̂p = −i~~∇ onto Eq. (6.102) straightforwardly yields

~̂pψ(~r, t) =
1√
V

∑

~k

ψ̃~k(t)e
i~k·~r

~~k . (6.103)

We thereby obtain the multicomponent ordinary differential equation

i~
∂

∂t
ψ̃~k(t) = H~kψ̃~k(t) (6.104)

for the Fourier components of the Dirac spinor, with the Hamiltonian matrix

H~k = ~c~k · ~α +mc2β (6.105)

which is written in the standard representation as

H~k =

(

mc2I ~c~k · ~σ
~c~k · ~σ −mc2I

)

(6.106)

where σ = (σx, σy, σz) is the vector of the Pauil matrices.
The general solution of the Dirac equation in Fourier space (6.104) is then

written as ψ̃~k(t) = exp(−itH~k/~)ψ̃~k(0) and can therefore be explicitly obtained
from a diagonalization of the 4×4 matrix H~k. This diagonalization is most easily
achieved through forming the square of this matrix. Using the anticommutation
properties (6.14–6.16) of the matrices αl and β, we straighforwardly evaluate

(

~k · ~α
)2

= ~k2 (6.107)

and obtain
H~kH~k = (~ωk)

2
I4×4 (6.108)
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where we define again, as for the Klein-Gordon theory,

ωk = c

√

~k2 + 1/λ2 . (6.109)

As the matrices αl and β are traceless, H~k is traceless, too. We therefore infer that
it has the eigenvalues ~ωk and −~ωk of which each one has a two-fold degeneracy.

The associated eigenvectors are determined through the straightforward cal-
culation

H~k

(

~ωkI4×4 ±H~k

)

= ~ωkH~k ± (~ωk)
2
I4×4 = ±~ωk

(

~ωkI4×4 ±H~k

)

(6.110)

where we use Eq. (6.108). Hence, two linearly independent column vectors of the
rank-two matrix ~ωkI4×4 ±H~k can be selected to span the eigenspace associated
with the eigenvalues ±~ωk. Within the standard representation, we choose the
first two columns of the matrix ~ωkI4×4 + H~k for the eigenvalue ~ωk and the
second pair of columns of the matrix ~ωkI4×4−H~k for the eigenvalue −~ωk. This
yields the matrix of the eigenvectors of H~k as

U~k =

(

(mc2 + ~ωk)I −~c~k · ~σ
~c~k · ~σ (mc2 + ~ωk)I

)

. (6.111)

Owing to the hermiticity of the Pauli matrices and their anticommutation
property σkσl + σlσk = 2δklI, we have

(~k · ~σ)†(~k · ~σ) = ~k2I , (6.112)

from which we straightforwardly infer that the column vectors forming the matrix
U~k are mutually orthogonal. Their scalar products with themselves are evaluated
as

(

mc2 + ~ωk

)2
+
(

~c~k
)2

= 2~ωk

(

~ωk +mc2
)

(6.113)

for all four column vectors, where we use Eq. (6.112) as well as the expression
(6.109) for ωk. To normalize those column vectors, we perform the straightfor-
ward calculations

~ck
√

2~ωk(~ωk +mc2)
=

1√
2

√

1− mc2

~ωk
≡ δk , (6.114)

mc2 + ~ωk
√

2~ωk(~ωk +mc2)
=

1√
2

√

1 +
mc2

~ωk
=

√

1− δ2k . (6.115)

This yields the orthonormal basis (U
(1)
~k
, U

(2)
~k
, U

(−1)

−~k
, U

(−2)

−~k
) of the normalized eigen-
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vectors

U
(1)
~k

=









√

1− δ2k
0

δkk̂3
δk(k̂1 + ik̂2)









, U
(2)
~k

=









0
√

1− δ2k
δk(k̂1 − ik̂2)
−δkk̂3









,

U
(−1)

−~k
=









−δkk̂3
−δk(k̂1 + ik̂2)
√

1− δ2k
0









, U
(−2)

−~k
=









−δk(k̂1 − ik̂2)
δkk̂3
0

√

1− δ2k









(6.116)

that are associated with the eigenvalues (~ωk, ~ωk,−~ωk,−~ωk), where we define
k̂l ≡ kl/k for all l = 1, 2, 3. δk is defined according to Eq. (6.114) and is therefore
approximately evaluated as

δk ≃
~k

2mc
+O

(

(

~k

mc

)3
)

(6.117)

in the nonrelativistic regime ~k/(mc)→ 0. We therefore obtain in this regime

(

U
(1)
~k
, U

(2)
~k
, U

(−1)

−~k
, U

(−2)

−~k

)

≃ I4×4 +
~

2mc

(

O −~k · ~σ
~k · ~σ O

)

(6.118)

up to corrections that scale quadratically with ~k/(mc).
The general solution of the differential equation (6.104) can then be written

as
ψ̃~k(t) =

∑

σ=1,2

(

α
(+)
~kσ
U

(σ)
~k
e−iωkt + α

(−)

−~kσ
U

(−σ)

−~k
eiωkt

)

(6.119)

for complex coefficients α
(±)
~kσ
∈ C that are defined through the initial values of the

vectors ψ̃~k. The general solution of the Dirac equation (6.36) is then expressed
as

ψ(~r, t) =
1√
V

∑

~k

∑

σ=1,2

(

ψ
(+)
~kσ

(~r, t) + ψ
(−)
~kσ

(~r, t)
)

(6.120)

in terms of the plane-wave spinors

ψ
(±)
~kσ

(~r, t) = α
(±)
~kσ
U

(±σ)
~k

e±i(~k·~r−ωkt) . (6.121)

Evaluating the total probability yields

1 =

∫

V

d3rψ†(~r, t)ψ(~r, t) =
∑

~k

ψ̃†

~k
(t)ψ̃~k(t)

=
∑

~k

∑

σ=1,2

(

∣

∣

∣
α
(+)
~kσ

∣

∣

∣

2

+
∣

∣

∣
α
(−)
~kσ

∣

∣

∣

2
)

(6.122)
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as normalization condition that the coefficients α
(±)
~kσ

must fulfil.
It is very instructive to also evaluate the total energy that is contained within

the spinor (6.120) solving the Dirac equation. Using the expression (6.92) for the
energy density, we straightforwardly calculate by means of integration by parts

E =

∫

V

d3rψ†(~r, t)
(

c~α · ~̂p+mc2β
)

ψ(~r, t) =
∑

~k

ψ̃†
~k
(t)H~kψ̃~k(t)

=
∑

~k

∑

σ=1,2

~ωk

(

∣

∣

∣
α
(+)
~kσ

∣

∣

∣

2

−
∣

∣

∣
α
(−)
~kσ

∣

∣

∣

2
)

. (6.123)

This expression for the total energy poses a serious conceptual problem insofar as
it is unbounded from below and can attain arbitrarily negative values. This would
consequently imply that the Dirac Hamiltonian does not feature a well-defined
ground state, contrary to the nonrelativistic Schrödinger equation. However, the
existence of such a ground state is a necessary ingredient of quantum statistical
physics, as it defines the absolute zero of temperature, and is well confirmed by
experimental evidence.

There is one possible resort to this problem. It requires to assume that the
particles described by the Dirac theory are of fermionic nature and satisfy Pauli’s
exclusion principle stating that two such particles cannot occupy the same quan-
tum state. In that case, we can assume that there are half as many particles
of this type in the universe as there are plane-wave eigenstates of the Dirac
Hamiltonian. The ground state of this many-particle system is then realized by
occupying each eigenstate of negative energy with exactly one particle. While
its associated energy would still have an infinitely low negative value, excitations
with respect to this ground state are then well defined. For instance, the first
excited may-particle eigenstate is realized by removing a particle that occupies a
negative-energy eigenstate with the wave vector ~k = ~0 (i.e., a state that is asso-

ciated with the one of the two spinors U
(−1)
~0

and U
(−2)
~0

) and by placing it instead

into one of the two positive-energy eigenstates with ~k = ~0 (associated with the

spinors U
(1)
~0

and U
(2)
~0

). As is illustrated in Fig. 6.1, this excitation creates a par-
ticle in the manifold of positive energy and leaves behind a hole in the manifold
of negative energy, in perfect analogy with the excitation of an electron from the
valence band to the conduction band in a semiconductor. The excitation energy
that is required to create such a particle-hole pair equals the energetic gap 2mc2

between the positive- and negative-energy manifolds. It is therefore suggestive
to interpret this hole as antiparticle, having the same mass and reacting to the
application of an electromagnetic field in exactly the opposite manner as the par-
ticle, and to consider the transition from the ground state to this first excited
state as particle-antiparticle creation out of the vacuum, the latter being defined
by this many-body ground state where all Dirac particles occupy negative-energy
states.
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Figure 6.1: Left panel: Eigenenergies ±~ωk of the Dirac Hamiltonian, plotted as
a function of k1 for k2 = k3 = 0, according to Eq. (6.109). The eigenspectrum
is clearly unbounded from below and features a gap of size 2mc2 between the
positive- and the negative-energy manifold. Right panel: A well-defined ground
state is achieved by assuming that particles described by the Dirac theory are
of fermionic nature and satisfy Pauli’s exclusion principle. Assuming that there
are half as many particles as there are eigenstates of the Dirac Hamiltonian,
the ground state is realized by occupying each eigenstate on the negative-energy
manifold with exactly one particle. The excitation of one particle to a state on
the positive-energy manifold leaves then behind a hole in the negative-energy
manifold which can be associated with an antiparticle.

6.7 Second Quantization

The above interpretation in terms of particles and antiparticles that are created
out of the vacuum can be concretized and corroborated from an analytical point
of view by means of a quantization procedure of the Dirac spinor, in analogy
with the quantization of the Klein-Gordon field discussed in Section 5.6. This
sounds rather inappropriate at first glance, given the fact that the spinor ψ
in the Dirac theory was specifically conceived to represent the wavefunction of
a quantum particle, which obviously is a concept that already belongs to the
quantum realm and admits no physical interpretation in terms of a classical field.
From a mathematical point of view, however, we are nevertheless perfectly free
to treat the Dirac spinor ψ : R4 → C4 as a complex-valued vector field defined
on space-time and subject it to a quantization procedure, as we did with the
Klein-Gordon field in Section 5.6. Quite consequently, that procedure is dubbed
second quantization since is applied to a concept (the wavefunction) that is the
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result of a “first” quantization procedure of the particle’s classical dynamics.

In contrast to the Klein-Gordon theory, we cannot make use of the results
obtained in the framework of Chapter 4 in order to determine how this second
quantization is to be done in practice. As a matter of fact, even though it admits
plane waves as solutions, the Dirac equation describing the time evolution of
the quantum particle’s wavefunction is technically not a wave equation given
in terms of the d’Alembert operator ∂ν∂

ν and thus cannot be subjected to the
same quantization procedure as classical waves. Moreover, as was developed in
Sections 4.2 and 5.6, that procedure would inevitably yield bosonic quantum
particles, whereas a particle described by the Dirac theory would, as we pointed
out in the previous section, need to be of fermionic nature to assure the existence
of a well-defined ground state.

In view of this situation, we have, at that stage in this course, no alternative
to introducing the quantization rules of the Dirac spinor in a heuristic manner,
in form of a basic postulate. We shall do this such that we obtain analogous
implications for the quantization of plane-wave modes as in the case of the Klein-
Gordon theory: similarly to Eqs. (5.56) and (5.57), plane-wave amplitudes that
oscillate as ∝ exp(−iωkt) within the expression (6.120) for the general solution
of the Dirac equation will be substituted by annihilation operators that are asso-
ciated with the primary particle species, i.e., the “particle” of the corresponding
theory, whereas amplitudes oscillating as ∝ exp(iωkt) within Eq. (6.120) will be
replaced by creation operators associated with the secondary particle species, to
be identified with the “antiparticle”. The prefactors that are involved in these
substitutions will be chosen such that we get a similar expression for the quantum
Hamiltonian as in Eq. (5.63), where a particle or antiparticle associated with the

plane-wave mode that is characterized by the wave vektor ~k will contribute with
the energy quantum ~ωk to the total energy.

Most specifically, this prescription amounts to imposing the quantization pro-
cedure

α
(+)
~kσ
e−iωkt 7→ â~kσ(t) , (6.124)

α
(−)
~kσ
eiωkt 7→ b̂†~kσ(t) , (6.125)

(α
(+)
~kσ

)∗eiωkt 7→ â†~kσ(t) , (6.126)

(α
(−)
~kσ

)∗e−iωkt 7→ b̂~kσ(t) (6.127)

for the plane-wave amplitudes α
(±)
~kσ

that characterize the general solution (6.120)

and their complex conjugates, where â†~kσ(t) and b̂†~kσ(t) represent the hermitian

conjugates of the operators â~kσ(t) and b̂~kσ(t), respectively. Considering, as in
the previous section, the presence of a normalization volume, these creation and
annihilation operators are postulated to satify the fermionic anticommutation
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rules

{

â~kσ, â
†

~k′σ′

}

≡ â~kσâ
†

~k′σ′
+ â†~k′σ′

â~kσ = δ~k~k′δσσ′ , (6.128)
{

b̂~kσ, b̂
†
~k′σ′

}

≡ b̂~kσ b̂
†
~k′σ′

+ b̂†~k′σ′
b̂~kσ = δ~k~k′δσσ′ (6.129)

for all σ, σ′ ∈ {−1/2, 1/2} and all wave vectors ~k,~k′ that are consistent with the
periodic boundary conditions of the normalization volume. We furthermore im-
pose perfect anticommutation of all other possible combinations of those creation
and annihilation operators, i.e.,

0 =
{

â~kσ, â~k′σ′

}

=
{

b̂~kσ, b̂~k′σ′

}

=
{

â~kσ, b̂~k′σ′

}

=
{

â~kσ, b̂
†
~k′σ′

}

=
{

â†~kσ, â
†

~k′σ′

}

=
{

b̂†~kσ, b̂
†

~k′σ′

}

=
{

â†~kσ, b̂
†

~k′σ′

}

=
{

â†~kσ, b̂~k′σ′

}

(6.130)

for all possible ~k,~k′ and σ, σ′.

A straightforward consequence of the application of the above set of identities
(6.130) to the special case ~k′ = ~k and σ′ = σ is Pauli’s exclusion principle

stating that it is impossible to have more than one fermionic particle within
the same eigenmode of the Dirac Hamiltonian. Indeed, we have in that case
0 = {â†~kσ, â

†

~kσ
} = â†~kσâ

†

~kσ
+ â†~kσâ

†

~kσ
= 2â†~kσâ

†

~kσ
, as well as b̂†~kσ b̂

†

~kσ
= 0 and â~kσâ~kσ =

b̂~kσ b̂~kσ = 0, which implies that the successive application of two identical creation
or annihilation operators to any state within the many-body Hilbert space that is
generated by those operators yields the null vector in that space. Pauli’s exclusion
principle is also valid in position space where the above quantization procedure
can be introduced via the quantization of the Dirac spinor

ψ(~r, t) 7→ ψ̂(~r, t) ≡
(

ψ̂1(~r, t), . . . , ψ̂4(~r, t)
)T

(6.131)

and the associated adjoint spinor (6.82)

ψ̄(~r, t) 7→ ˆ̄ψ(~r, t) ≡
(

ˆ̄ψ1(~r, t), . . . ,
ˆ̄ψ4(~r, t)

)

(6.132)

whose components are postulated to satisfy the anticommutation rules

{

ψ̂s(~r, t),
ˆ̄ψs′(~r

′, t)
}

= δss′δ(~r − ~r′) (6.133)

as well as
{

ψ̂s(~r, t), ψ̂s′(~r
′, t)
}

=
{

ˆ̄ψs(~r, t),
ˆ̄ψs′(~r

′, t)
}

= 0 (6.134)

for all ~r, ~r′ ∈ R3 and all s, s′ ∈ {1, . . . , 4}.
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The quantum Hamiltonian, which is obtained from the quantized analog of
the expression (6.123) for the total energy of the Dirac spinor, is then straight-
forwardly calculated as

Ĥ =

∫

V

d3rψ̂†(~r, t)
(

c~α · ~̂p+mc2β
)

ψ̂(~r, t)

=
∑

~k

∑

σ=1,2

~ωk

(

â†~kσâ~kσ − b̂~kσ b̂
†

~kσ

)

=
∑

~k

∑

σ=1,2

~ωk

(

â†~kσâ~kσ + b̂†~kσ b̂~kσ

)

−
∑

~k

2~ωk , (6.135)

where we made use of the anticommutation law (6.129) in order to obtain the
expression (6.135). This Hamiltonian has the asset that it features a well-defined
ground state |−〉 corresponding to the absence of particles, i.e. â~kσ|−〉 = b̂~kσ|−〉 =
0 for all ~k, σ, even though the associated ground state energy E0 = −

∑

~k 2~ωk is
infinitely negative. As in the case of the quantization of electromagnetic waves
and the Klein-Gordon equation, we can treat this infinitely negative energy as an
unimportant constant that can be formally eliminated by a proper renormaliza-
tion of the energy scale. The presence of this constant in the expression (6.135) is
nevertheless rather instructive as it quantitatively corroborates the interpretation
that we put forward at the end of the previous section 6.6 and that is illustrated
in the right panel of Fig. 6.1: the ground state of this quantum many-body system
corresponds to the situation where all one-particle eigenmodes of negative energy
are occupied with fermionic particles while all eigenmodes of positive energy are
unoccupied. Clearly, this particular many-body state, which is also termed Dirac

sea, has the total energy −
∑

~k 2~ωk.

From this reasoning, it becomes clear that â†~kσ is the creation operator of a
particle within the positive-energy plane-wave state that is given by the wave-

function U
(σ)
~k
ei
~k·~r, while b̂†~kσ has to be understood as the creation operator of a

hole in the corresponding negative-energy plane-wave state, which can then be
associated with an antiparticle in the mode that is characterized by the wave-

function (U
(−σ)
~k

)∗ei
~k·~r. This antiparticle has exactly the same basic properties as

the particle, except for its charge which is opposited to the one of the particle.
As is illustrated in the right panel of Fig. 6.1, the minimal energy that is needed
to place a particle from the negative-energy branch to the positive-energy branch
of the spectrum is given by the gap 2mc2 between those two branches. It is by
no means a coincidene that this gap also corresponds to the fundamental energy
that one would need to generate a particle-antiparticle pair for a particle species
with mass m.

The quantum operator associated with total momentum is obtained from the
quantization and integration of the expression (6.93) for the momentum density
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contained in the Dirac spinor. This yields

~̂P =

∫

V

d3rψ̂†(~r, t)
~

i
~∇ψ̂(~r, t) =

∑

~k

∑

σ=1,2

~~k
(

â†~kσâ~kσ − b̂~kσ b̂
†

~kσ

)

=
∑

~k

∑

σ=1,2

~~k
(

â†~kσâ~kσ + b̂†~kσ b̂~kσ

)

, (6.136)

where owing to
∑

~k
~k = 0 the anticommutator of b̂~kσ and b̂†~kσ does not give rise to

any additional constant. We can also define a quantum operator that is associated
with the total probability of the Dirac spinor. This operator is evaluated as

Q̂ =

∫

V

d3rψ̂†(~r, t)ψ̂(~r, t) =
∑

~k

∑

σ=1,2

(

â†~kσâ~kσ + b̂~kσ b̂
†
~kσ

)

=
∑

~k

∑

σ=1,2

(

â†~kσâ~kσ − b̂
†

~kσ
b̂~kσ

)

+
∑

~k

2 . (6.137)

It features again an infinite constant which can be attributed to the presence
of the Dirac sea, where every single-particle plane-wave state that is consistent
with the periodic boundary conditions of the nomalization volume is populated
with exactly two particles. Quite logically, one has to add to this constant the
total population of positive-energy modes and subtract the total number of holes
in the Dirac sea, in order to obtain the total population of the system. This is
exactly what is expressed by Eq. (6.137). Leaving out the unimportant constant,
we effectively obtain again a charge operator, assigning a positive (or negative)
charge to “particles”, i.e., to populations of positive-energy modes, and a charge
with opposite sign to “antiparticles”, i.e., to holes in the populations of negative-
energy modes. This results in a conservation law for the total charge, as in the
case of the Klein-Gordon theory, while the total number of of “particles” and
“antiparticles” in the above sense is not conserved and can vary, e.g. due to the
creation (or annihilation) of a particle-antiparticle pair that occurs together with
the absorption (or emission) of a photon with a sufficiently high energy (> 2mc2).

We should note in this context that the association of b̂†~kσ with a creation

operator of a fermionic particle species and of b̂~kσ with the corresponding an-
nihilation operator is a matter of interpretation and can be swapped, owing to
the symmetry of the anticommutation rule (6.129). Nothing would formally pre-
vent us to interpret b̂~kσ as creation operator and b̂†~kσ as annihilation operator,

in which case those operators would refer to the same particle species (with the
same charge) as the â~kσ, â

†

~kσ
operators. The price that one would have to pay

for adopting this particular choice is that the physical vacuum of the fermionic
system does not correspond to the absence of particles but rather to the situation
that all negative-energy modes are populated with exactly one particle. This lat-
ter aspect makes it preferable to abandon this choice and work with the notion
of antiparticles instead.



6.8. THE PAULI EQUATION 91

6.8 The Pauli equation

Owing to the insights that were obtained in the two preceeding sections 6.6 and
6.7, we can safely claim that in the nonrelativistic limit the upper two components
of the Dirac spinor describe the particle component of the wavefunction while its
lower two components correspond to the associated antiparticle. This association
allows us to elaborate the nonrelativistic limit of the Dirac theory in a rather
straightforward manner. To this end, let us start with the Dirac equation (6.97)
in the presence of an electromagnetic field described in terms of the four-potential
(Aν) = (Φ, ~A). This equation can be written as

i~Dtψ(~r, t) = c~α · ~πψ(~r, t) +mc2βψ(~r, t) (6.138)

with the covariant time derivative operator

Dt =
∂

∂t
+
iq

~
Φ(~r, t) (6.139)

and the kinetic momentum operator

~π =
~

i
~∇− q

c
~A(~r, t) . (6.140)

Employing the standard representation, with the choices

β =

(

I O

O −I

)

, αl =

(

O σl
σl O

)

(6.141)

for l = 1, 2, 3, and decomposing the Dirac spinor according to

ψ =









ψ1

ψ2

ψ3

ψ4









≡
(

ψ(+)

ψ(−)

)

(6.142)

with the two two-component spinors

ψ(±) =

(

ψ
(±)
1

ψ
(±)
2

)

, (6.143)

we can rewrite the Dirac equation (6.138) in terms of the two coupled equations

i~Dtψ
(+)(~r, t) = c~σ · ~πψ(−)(~r, t) +mc2ψ(+)(~r, t) , (6.144)

i~Dtψ
(−)(~r, t) = c~σ · ~πψ(+)(~r, t)−mc2ψ(−)(~r, t) . (6.145)

As in the case of the Klein-Gordon theory (see Eqs. (5.81) and (5.82) in Section
5.7), we thereby obtain a system of two coupled Schrödinger-like equations for



92 CHAPTER 6. THE DIRAC THEORY

the particle and the antiparticle component, featuring the rest energies mc2 and
−mc2, respectively.

Let us first focus on the development of a nonrelativistic theory for the particle
component. To get rid of the rest energy term mc2 in the equation (6.144) for
ψ(+), we first apply the gauge transformation ψ(±) 7→ φ(±) defined through

ψ(±)(~r, t) ≡ φ(±)(~r, t)e−imc2t/~ , (6.146)

which effectively redefines the origin of energy such that it corresponds to the
rest energy mc2. Equations (6.144) and (6.145) are then rewritten as

i~Dtφ
(+)(~r, t) = c~σ · ~πφ(−)(~r, t) , (6.147)

i~Dtφ
(−)(~r, t) = c~σ · ~πφ(+)(~r, t)− 2mc2φ(−)(~r, t) . (6.148)

in terms of these redefined two-component spinors φ(±).
As in the discussion of the nonrelativistic limit of the Klein-Gordon theory

(see Section 5.7), we make the assumption that the great majority of norm is
contained within φ(+) (which will be fulfilled e.g. if for some initial time t0 we
have φ(−)(~r, t0) = 0 for all ~r). Equation (6.148) can then be formally solved
through the iterative procedure

φ(−) =
1

2mc2
(

~σ · ~πφ(+) − i~Dtφ
(−)
)

(6.149)

=
1

2mc2

[

~σ · ~πφ(+) − i~Dt
1

2mc2
(

~σ · ~πφ(+) − i~Dtφ
(−)
)

]

= . . .

where φ(−) on the right-hand side of this equation is recursively replaced by the
expression (6.149). We can thereby express φ(−) in terms of φ(+) via the series

φ(−)(~r, t) =
~σ · ~π
2mc

φ(+)(~r, t)− 1

4m2c3
i~Dt ~σ · ~πφ(+)(~r, t) + . . . (6.150)

featuring terms that decrease more and more for asymptotically large c. Inserting
this expression into Eq. (6.147) yields the equation

i~Dtφ
(+)(~r, t) =

(~σ · ~π)2
2m

φ(+)(~r, t)− 1

4m2c2
~σ · ~π i~Dt ~σ · ~πφ(+)(~r, t) + . . .

=
(~σ · ~π)2
2m

φ(+)(~r, t) +O(1/c2) (6.151)

in the nonrelativistic limit c→∞.
To elaborate the kinetic term of this equation in more detail, we make use of

the general relation

σlσl′ = δll′I+ i

3
∑

k=1

ǫll′kσk (6.152)
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characterizing the Pauli matrices σl. This yields

(~σ · ~π)2 =
3
∑

l,l′=1

σlσl′πlπl′ = ~π2 + i (~π × ~π) · ~σ . (6.153)

Contrary to what one would naively expect, the vector product of the kinetic
momentum operator with itself is not zero; using its defintion (6.140) we evaluate
it as

~π × ~π =

(

~

i
~∇− q

c
~A

)

×
(

~

i
~∇− q

c
~A

)

= −~q
ic
∇× ~A = −~q

ic
~B (6.154)

with ~B = ∇ × ~A the magnetic field. Inserting this expression into Eq. (6.151)
and using the definitions (6.139) and (6.140) of the covariant time derivative and
the kinetic momentum, respectively, yields

i~
∂

∂t
φ(+)(~r, t) =

1

2m

(

~

i
~∇− q

c
~A(~r, t)

)2

φ(+)(~r, t) + qΦ(~r, t)φ(+)(~r, t)

− q~

2mc
~B(~r, t) · ~σφ(+)(~r, t) , (6.155)

which is the Pauli equation describing a particle with the charge q in the presence
of an electromagnetic field. This Pauli equation can be seen as a generalization
of the Schrödinger equation (3.40) for a spin 1/2 particle, whose wavefunction is
represented in terms of a two-component Pauli spinor

ψ(+)(~r, t) =

(

ψ
(+)
1 (~r, t)

ψ
(+)
2 (~r, t)

)

≡
(

ψ
(+)
↑ (~r, t)

ψ
(+)
↓ (~r, t)

)

. (6.156)

Remarkably, the existence of the two “spin up” and “spin down” components
of the wavefunction does not need to be separately postulated but is a direct
consequence of the Dirac equation. The latter also correctly yields the associated
magnetic moment and its interaction with an external magnetic field, correspond-
ing to the last term in Eq. (6.155), which in the case of an electron with the charge

q = −e reads µB
~B(~r, t) · ~σφ(+)(~r, t) with µB = e~/(2mc) the Bohr magneton.

Similarly, a nonrelativistic theory for the antiparticle can be obtained by
applying the gauge transformation ψ(±) 7→ φ̃(±) with

ψ(±)(~r, t) ≡ φ̃(±)(~r, t)eimc2t/~ , (6.157)

by which the origin of energy is effectively set to −mc2. This yields from
Eqs. (6.144) and (6.145) the system of equations

i~Dtφ̃
(−)(~r, t) = c~σ · ~πφ̃(+)(~r, t) , (6.158)

i~Dtφ̃
(+)(~r, t) = c~σ · ~πφ̃(−)(~r, t) + 2mc2φ̃(+)(~r, t) . (6.159)
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In analogy with Eq. (6.150), the approximate solution of Eq. (6.159) in the non-
relativistic limit c→∞ is given by

φ̃(+)(~r, t) ≃ −~σ · ~π
2mc

φ̃(−)(~r, t) , (6.160)

from wich we obtain, after insertion into Eq. (6.158),

i~Dtφ̃
(−)(~r, t) ≃ −(~σ · ~π)

2

2m
φ̃(−)(~r, t) , (6.161)

or, rewritten in a more explicit manner,

i~
∂

∂t
φ̃(−)(~r, t) = − 1

2m

(

~

i
~∇− q

c
~A(~r, t)

)2

φ̃(−)(~r, t) + qΦ(~r, t)φ̃(−)(~r, t)

+
q~

2mc
~B(~r, t) · ~σφ̃(−)(~r, t) . (6.162)

The opposite-charge counterpart of Eq. (6.155),

i~
∂

∂t
φc(~r, t) =

1

2m

(

~

i
~∇+

q

c
~A(~r, t)

)2

φc(~r, t)− qΦ(~r, t)φc(~r, t)

+
q~

2mc
~B(~r, t) · ~σφc(~r, t) , (6.163)

is then obtained for the conjugated Pauli spinor, defined by

φc(~r, t) = σ2

(

φ̃(−))(~r, t)
)∗

, (6.164)

as can be shown using the properties σ2σ
∗
l = −σlσ2 of the Pauli matrices σl for

l = 1, 2, 3, which result from the anticommutation relations {σl, σl′} = 2δll′ as
well as from the identities σ∗

1 = σ1, σ
∗
2 = −σ2, σ∗

3 = σ3. Charge inversion in
the framework of Pauli spinors is therefore associated with complex conjugation
combined with an exchange of the spin-up and the spin-down components as
induced by the application of the σ2 matrix.

6.9 Relativistic corrections

At first glance, it seems rather straightforward how leading-order relativistic cor-
rections are to be obtained with respect to the Pauli equation (6.155), namely
by the evaluation of the second term, scaling as 1/c2, on the right-hand side of
Eq. (6.151). However, this approach would not account for a subtle but nev-
ertheless important aspect that could be neglected so far, namely the fact that
the association of the upper two components of the Dirac spinor with the par-
ticle components of the species under consideration represents a nonrelativistic
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approximation, which is strictly valid only in the asymptotic limit c → ∞. For
large but finite c, the particle components feature perturbative admixtures of the
lower two components of the Dirac spinor, and vice versa for the antiparticle com-
ponents, as was already worked out in Section 6.6. An appropriate unitary basis
transformation of the Dirac spinor, also known as Foldy-Wouthuysen transforma-

tion, would therefore have to be applied before starting to evaluate relativistic
correction terms.

This transformation can be straightforwardly evaluated in the absence of the
electromagnetic field, where the Dirac equation can be analytically solved. Using
the expressions (6.116) for the eigenspinors of the Dirac Hamiltonian matrix
(6.106), we can express the Fourier transform of the Pauli spinor associated with
the particle component as

φ̃~k =
√

1− δ2kφ̃
(+)
~k

+
δk
k
~k · ~σφ̃(−)

~k
(6.165)

in terms of the Fourier transforms of the upper and lower block φ(+), φ(−) of the
Dirac spinor, with

δk =
1√
2

√

1− mc2

~ωk

≃ ~k

2mc
+O

(

1/c3
)

. (6.166)

Using
√

1− δ2k ≃ 1− δ2k
2

+O
(

1/c4
)

, (6.167)

we obtain the Foldy-Wouthuysen transformation in configuration space as

φ(~r, t) ≃
(

1− ~p2

8m2c2

)

φ(+)(~r, t) +
~σ · ~p
2mc

φ(−)(~r, t) +O
(

1/c4
)

(6.168)

up to corrections that scale as 1/c4, with ~p = −i~~∇ the momentum operator.
In view of Eq. (6.168), we make the ansatz

φ(~r, t) ≃
(

1− 1

2
K̂2

)

φ(+)(~r, t) + K̂φ(−)(~r, t) +O
(

1/c4
)

(6.169)

for the Pauli spinor representing the particle component in the presence of the
electromagnetic field, where we define the operator

K̂ =
~σ · ~π
2mc

. (6.170)

Using Eq. (6.150), which is rewritten as

φ(−)(~r, t) = K̂φ(+)(~r, t) +O
(

1/c3
)

(6.171)
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with this new operator, we obtain from Eq. (6.169)

φ(~r, t) ≃
(

1 +
1

2
K̂2

)

φ(+)(~r, t) +O
(

1/c4
)

. (6.172)

As both the Pauli matrices and the components of the kinetic momentum operator
~π are hermitian, the operator K̂ is hermitian, too. The norm of the particle
component spinor is then evaluated as

∫

d3rφ†(~r, t)φ(~r, t) ≃
∫

d3r

[(

1 +
1

2
K̂2

)

φ(+)

]†

(~r, t)

(

1 +
1

2
K̂2

)

φ(+)(~r, t)

≃
∫

d3r
(

φ(+)†(~r, t)φ(+)(~r, t) + (K̂φ(+))†(~r, t)K̂φ(+)(~r, t)
)

≃
∫

d3r

∫

d3r
(

φ(+)†(~r, t)φ(+)(~r, t) + φ(−)†(~r, t)φ(−)(~r, t)
)

= 1 +O
(

1/c4
)

, (6.173)

where at each step of the calculation we neglecte terms that scale as 1/c4. This
proves the validity of the ansatz (6.169) giving rise to a Pauli spinor whose norm
is preserved in the course of time evolution up to corrections of the order of 1/c2.

Relativistic corrections to the Pauli equation can then be properly obtained
from Eq. (6.151), rewritten in terms of the operator (6.170) as

i~Dtφ
(+)(~r, t) = 2mc2K̂2φ(+)(~r, t)− K̂i~DtK̂φ

(+)(~r, t) +O
(

1/c4
)

, (6.174)

by substituting φ(+) with the true particle component spinor φ via the inversion
of Eq. (6.172), which is approximately evaluated as

φ(+)(~r, t) ≃
(

1− 1

2
K̂2

)

φ(~r, t) +O
(

1/c4
)

. (6.175)

This yields, up to corrections of the order 1/c4, the equation

(

i~Dt − 2mc2K̂2
)

φ(~r, t) ≃
(

1

2
i~DtK̂

2 −mc2K̂4 − K̂i~DtK̂

)

φ(~r, t) (6.176)

for the Pauli spinor φ, which is written such that the terms constituting the Pauli
equation are gathered on its left-hand side while the right-hand side contains the
relativistic corrections scaling as 1/c2. We directly infer

mc2K̂2φ(~r, t) ≃ 1

2
i~Dtφ(~r, t) +O

(

1/c2
)

(6.177)

from Eq. (6.176), which is another way to write the Pauli equation. Hence, we
can substitute

−mc2K̂4φ(~r, t) ≃ 1

2
K̂2i~Dtφ(~r, t)− 2mc2K̂4φ(~r, t) +O

(

1/c4
)

(6.178)



6.9. RELATIVISTIC CORRECTIONS 97

in Eq. (6.176), which allows us to rewrite this equation as

(

i~Dt − 2mc2K̂2
)

φ(~r, t) ≃ 1

2

[

[i~Dt, K̂], K̂
]

φ(~r, t)− 2mc2K̂4φ(~r, t) (6.179)

up to corrections of the order 1/c4.
This latter form of the amended Pauli equation is particularly advantageous

for further evaluation since the presence of the double commutator allows for
drastic simplifications. Using Eq. (6.170) and the definitions (6.139) and (6.140)
of the covariant time derivative and the kinetic momentum operator, we calculate

[i~Dt, K̂] =

[

i~
∂

∂t
− qΦ(~r, t), 1

2mc
~σ ·
(

~

i
~∇− q

c
~A(~r, t)

)]

=
i~q

2mc
~σ · ~E(~r, t) (6.180)

where
~E(~r, t) = −~∇Φ(~r, t)− 1

c

∂

∂t
~A(~r, t) (6.181)

is the external electric field. This yields

[

[i~Dt, K̂], K̂
]

=
i~q

4m2c2
[~σ · ~E(~r, t), ~σ · ~π] . (6.182)

The relation (6.152) characterizing the Pauli matrices allows us to express the
commutator appearing in Eq. (6.182) as

[~σ · ~E(~r, t), ~σ · ~π] =
3
∑

l=1

[El(~r, t), πl] + i~σ · [ ~E(~r, t)× ~π − ~π × ~E(~r, t)] . (6.183)

Using Maxwell’s equations (2.24) and (2.36), we evaluate

3
∑

l=1

[El(~r, t), πl] = i~~∇ · ~E(~r, t) = 4πi~ρext(~r, t) , (6.184)

with ρext(~r, t) the charge density that generates the external electric field (i.e.,
which is associated with the presence of other charged particles in the system,
besides the Dirac particle under study), as well as

~σ · [ ~E(~r, t)× ~π − ~π × ~E(~r, t)] = 2~σ · [ ~E(~r, t)× ~π] + i~

c
~σ · [~∇× ~E(~r, t)]

= 2~σ · [ ~E(~r, t)× ~π]− i~

c
~σ · ∂

∂t
~B(~r, t) (6.185)

where ~B(~r, t) is the external magnetic field.
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Inserting these expressions into Eq. (6.179) yields the equation

i~
∂

∂t
φ(~r, t) = (HP + δHrel + δHD + δHLS)φ(~r, t) +O

(

1/c4
)

(6.186)

for the Pauli spinor characterizing the particle component, where

HP =
1

2m

(

~

i
~∇− q

c
~A(~r, t)

)2

+ qΦ(~r, t)− q~

2mc
~B(~r, t) · ~σ (6.187)

is the Hamiltonian generating the Pauli equation (6.155),

δHrel = −
(~σ · ~π)4
8m3c2

= − 1

8m3c2

[

(

~

i
~∇− q

c
~A(~r, t)

)2

− q~

c
~B(~r, t) · ~σ

]2

(6.188)

is the Hamiltonian describing relativistic corrections to the kinetic energy (in
analogy with Eq. (5.91) in the framework of the Klein-Gordon theory),

δHD = − πq~2

2m2c2
ρext(~r, t) (6.189)

is the so-called Darwin term, and

δHLS = − q~

4m2c2
~σ ·
[

~E(~r, t)×
(

~

i
~∇− q

c
~A(~r, t)

)]

+
iq~2

8m2c3
~σ · ∂

∂t
~B(~r, t) (6.190)

is the term generating spin-orbit coupling. Equations (6.188) and (6.190) further
simplify to

δHrel ≃ −
~4∆2

8m3c2
+O

(

1/c4
)

, (6.191)

(with ∆ the Laplacian) as well as

δHLS ≃ −
q~

4m2c2
~σ ·
(

~E(~r, t)× ~̂p
)

+O
(

1/c4
)

(6.192)

in a physical context that is essentially electrostatic, i.e., where we can assume
that the presence of a magnetic field is a relativistic effect such that we have
~A, ~B ∝ O(1/c). This situation is clearly encountered in a one-electron atom
where the external electric field is generated by the presence of the nucleus.
Placing the latter at the origin of the spatial coordinate system, we obtain the
time-independent electric field

~E(~r) = −~∇Φ(r) = −1
r
Φ′(r)~r (6.193)

expressed in terms of the spherically symmetric scalar potential Φ that would be
given by

Φ(r) =
e

r
(6.194)
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in the case of the hydrogen atom, with e the elementary charge. The spin-orbit
coupling term (6.192) then simplifies to

δHLS ≃
q~

4m2c2r
Φ′(r)~σ · ~̂L+O

(

1/c4
)

(6.195)

with ~̂L = ~r × ~p the angular momentum operator of the electron.
The fine structure of the atomic spectrum is then evaluated from the rela-

tivistic corrections (6.189), (6.191), and (6.195) using q = −e for the charge of
the electron. Those corrections represent an integral part of the Dirac equa-
tion and do not need to be postulated separately. The spectrum of hydrogen
including its fine structure can therefore be also obtained via a direct solution of
the Dirac equation in the presence of the scalar potential (6.194). More gener-
ally, combining Dirac’s theory in its second quantized formulation (see Section
6.7) with the quantized version of electromagnetism (see Section 4.3) gives rise
to the framework of quantum electrodynamics within which higher order correc-
tions, of the order of 1/c4 and even beyond, can be quantitatively calculated with
great accuracy, yielding excellent agreement with high-resolution measurements
of atomic spectra. This certainly constitutes one of the greatest success stories
in the history of theoretical physics.

Problem

6.1 Show that the time dependence implied by the definitions (6.124)–(6.127)
of the particle and antiparticle creation and annihilation operators is consis-
tent with the Heisenberg equations for the time evolution of those operators
generated by the Hamiltonian (6.135).
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Appendix A

Solutions to the problems

Problems of Chapter 2

2.1 We start from the definition (2.40) of the energy-momentum tensor. Using
the product rule as well as the relation ∂ν = gνµ∂

µ, we derive

∂νT
µν =

1

4π

(

1

2
Fαβ∂

µF αβ − F µβ∂νFνβ − Fνβ∂
νF µβ

)

(A.1)

= −1
c
F µνjν +

1

4π
Fαβ

(

1

2
∂µF αβ − ∂αF µβ

)

, (A.2)

where in the step from Eq. (A.1) to Eq. (A.2) we make use of the inho-
mogeneous Maxwell equations (2.35). We now insert into Eq. (A.2) the
expression (2.25) of the electromagnetic field tensor in terms of the four-
potential. Assuming that the latter is twice continuously differentiable, we
can use ∂α∂νAβ = ∂ν∂αAβ for all α, β, ν and hence rewrite Eq. (A.2) as

∂νT
µν +

1

c
F µνjν =

1

4π
(∂αAβ − ∂βAα)

(

∂α∂βAν − 1

2
∂ν
(

∂αAβ + ∂βAα
)

)

=
1

4π
(∂αAβ)

(

∂α∂β − ∂β∂α
)

Aν = 0 . (A.3)

This proves Eq. (2.45).

Problems of Chapter 3

3.1 Equation (3.46) is most straightforwardly verified by inserting the inversion
of the expression (3.45), namely

ψ(~r, t) = ψ′(~r, t) exp

[

iq

~c
χ(~r, t)

]

, (A.4)
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into the Schrödinger equation (3.40). By applying the product rule we
obtain

i~
∂

∂t
ψ(~r, t) =

(

i~
∂

∂t
ψ′(~r, t)− q

c

∂

∂t
χ(~r, t)ψ′(~r, t)

)

exp

[

iq

~c
χ(~r, t)

]

, (A.5)

from which follows
(

i~
∂

∂t
− qΦ(~r, t)

)

ψ(~r, t) = exp

[

iq

~c
χ(~r, t)

]

×
(

i~
∂

∂t
− qΦ′(~r, t)

)

ψ′(~r, t) (A.6)

using the transformed scalar potential

Φ′(~r, t) = Φ(~r, t) +
1

c

∂

∂t
χ(~r, t) (A.7)

according to Eq. (3.44). Similarly, we calculate

~

i
~∇ψ(~r, t) =

(

~

i
~∇ψ′(~r, t) +

q

c
~∇χ(~r, t)ψ′(~r, t)

)

exp

[

iq

~c
χ(~r, t)

]

, (A.8)

from which we infer
[

~

i
~∇− q

c
~A(~r, t)

]

ψ(~r, t) = exp

[

iq

~c
χ(~r, t)

]

×
[

~

i
~∇− q

c
~A′(~r, t)

]

ψ′(~r, t) (A.9)

and hence
[

~

i
~∇− q

c
~A(~r, t)

]2

ψ(~r, t) = exp

[

iq

~c
χ(~r, t)

]

×
[

~

i
~∇− q

c
~A′(~r, t)

]2

ψ′(~r, t) , (A.10)

using
~A′(~r, t) = ~A(~r, t)− ~∇χ(~r, t) (A.11)

according to Eq. (3.44). This proves Eq. (3.46).

Problems of Chapter 4

4.1 We first calculate via integration by parts
∫

[

~∇φ̂(~r, t)
]2

d3r = −
∫

φ̂(~r, t)∆φ̂(~r, t)d3r , (A.12)
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using the periodicity of the boundary conditions. From

∆e±i~k·~r = −~k2e±i~k·~r = −ω
2
k

c̃2
e±i~k·~r (A.13)

we obtain

∆φ̂(~r, t) = − 1√
V

∑

~k

√

~

2m̃ωk

ω2
k

c̃2

[

â~k(t)e
i~k·~r + â†~k(t)e

−i~k·~r
]

(A.14)

and hence

φ̂(~r, t)∆φ̂(~r, t) = − ~

2m̃c̃2V

∑

~k,~k′

√

ω3
k

ωk′

[

â~k′(t)e
i~k′·~r + â†~k′(t)e

−i~k′·~r
]

×
[

â~k(t)e
i~k·~r + â†~k(t)e

−i~k·~r
]

. (A.15)

Using
∫

V
ei(

~k−~k′)·~rd3r = V δ~k~k′ for all wave vectors ~k,~k′ whose associated
plane waves satisfy the periodic boundary conditions, the integration of
this latter expression over the renormalization volume yields

∫

d3rφ̂(~r, t)∆φ̂(~r, t) = −
∑

~k

~ωk

2m̃c̃2

[

â~k(t)â
†
~k
(t) + â†~k(t)â~k(t)

+ â~k(t)â−~k(t) + â†~k(t)â
†

−~k
(t)
]

. (A.16)

Similarly, we calculate

[

Π̂(~r, t)
]2

= −~m̃
2V

∑

~k,~k′

√
ωkωk′

[

â~k(t)e
i~k·~r − â†~k(t)e

−i~k·~r
]

×
[

â~k′(t)e
i~k′·~r − â†~k′(t)e

−i~k′·~r
]

, (A.17)

from which follows
∫

d3r
[

Π̂(~r, t)
]2

=
∑

~k

~m̃ωk

2

[

â~k(t)â
†
~k
(t) + â†~k(t)â~k(t)

−â~k(t)â−~k(t)− â
†
~k
(t)â†

−~k
(t)
]

. (A.18)

This altogether yields

Ĥ =
1

2m̃

∫

d3r
[

Π̂(~r, t)
]2

− 1

2
m̃c̃2

∫

d3rφ̂(~r, t)∆φ̂(~r, t)

=
∑

~k

~ωk

2

[

â~k(t)â
†

~k
(t) + â†~k(t)â~k(t)

]

(A.19)
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4.2 Since the old four-potential A′ν satisfies the Lorenz gauge

1

c

∂

∂t
Φ′(~r, t) + ~∇ · ~A′(~r, t) = 0 , (A.20)

the divergence of the new vector potential, defined through

~A(~r, t) = ~A′(~r, t)− ~∇χ(~r, t) , (A.21)

can be expressed as

~∇ · ~A(~r, t) = ~∇ · ~A′(~r, t)−∆χ(~r, t) = −1
c

∂

∂t
Φ′(~r, t)−∆χ(~r, t) . (A.22)

Using the fact that the old scalar potential Φ′ is a solution of the wave
equation (4.46)

1

c2
∂2

∂t2
Φ′(~r, t) = ∆Φ′(~r, t) , (A.23)

we evaluate
∫ t

0

∆Φ′(~r, t′)dt′ =

∫ t

0

1

c2
∂2

∂t′2
Φ′(~r, t′)dt′ =

1

c2
∂Φ′

∂t
(~r, t)− 1

c2
∂Φ′

∂t
(~r, 0)

(A.24)
and hence obtain from Eq. (4.47)

∆χ(~r, t) = −1
c

∂Φ′

∂t
(~r, t) +

1

c

∂Φ′

∂t
(~r, 0) +

1

4πc

∫

d3r′
∂2

∂~r2
1

|~r − ~r′|
∂Φ′

∂t
(~r′, 0)

= −1
c

∂Φ′

∂t
(~r, t) , (A.25)

where we use the identity ∆|~r|−1 = −4πδ(~r). This yields ~∇ · ~A(~r, t) = 0.

4.3 From the quantized version of Eq. (4.54) we have ~̂B(~r, t) = ~∇× ~̂A(~r, t) and
can therefore express the second term of Eq. (4.67) as

∫

d3r ~̂B2(~r, t) =

∫

d3r
(

~∇× ~̂A(~r, t)
)

·
(

~∇× ~̂A(~r, t)
)

=

∫

d3r
(

~̂A(~r, t)× ~∇
)

·
(

~∇× ~̂A(~r, t)
)

(A.26)

using integration by parts (and assuming that boundary terms at infinity
do not play any role). We then straightforwardly rewrite

(

~̂A(~r, t)× ~∇
)

·
(

~∇× ~̂A(~r, t)
)

= ~̂A(~r, t) ·
[

~∇×
(

~∇× ~̂A(~r, t)
)]

= ~̂A(~r, t) ·
[

~∇
(

~∇ · ~̂A(~r, t)
)

−∆ ~̂A(~r, t)
]

= − ~̂A(~r, t) ·∆ ~̂A(~r, t) (A.27)
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because of the gauge (4.48).

The quantized version of Eq. (4.52) is given by

~̂A(~r, t) =
c

2π

∫

d3k

√

~

ωk

∑

σ=1,2

(

â~kσ(t)e
i~k·~r + â†~kσ(t)e

−i~k·~r
)

~eσ(~k) , (A.28)

where we inserted into Eq. (4.52) the expression (4.64) for the photonic
annihilation operator, its adjoint, as well as the definition (4.60) of the
mass parameter m̃. From

∆e±i~k·~r = −~k2e±i~k·~r = −ω
2
k

c2
e±i~k·~r (A.29)

we calculate

∆ ~̂A(~r, t) = −
∫

d3k

√

~ω3
k

2πc

∑

σ=1,2

(

â~kσ(t)e
i~k·~r + â†~kσ(t)e

−i~k·~r
)

~eσ(~k) , (A.30)

which yields

~̂A(~r, t) ·∆ ~̂A(~r, t) = − ~

(2π)2

∫∫

d3k d3k′

√

ω3
k

ωk′

∑

σ,σ′=1,2

~eσ′(~k′) · ~eσ(~k)

×
(

â~k′σ′(t)e
i~k′·~r + â†~k′σ′

(t)e−i~k′·~r
)

×
(

â~kσ(t)e
i~k·~r + â†~kσ(t)e

−i~k·~r
)

. (A.31)

We then obtain
∫

d3r ~̂B2(~r, t) = −
∫

d3r ~̂A(~r, t) ·∆ ~̂A(~r, t)

=

∫

d3k 2π~ωk

[

∑

σ=1,2

(

â~kσ(t)â
†

~kσ
(t) + â†~kσ(t)â~kσ(t)

)

(A.32)

+
∑

σ,σ′=1,2

~eσ′(−~k) · ~eσ(~k)
(

â
−~kσ′(t)â~kσ(t) + â†

−~kσ′
(t)â†~kσ(t)

)

]

using
∫

d3rei(
~k−~k′)·~r = (2π)3δ(~k − ~k′) and the orthogonality of the polariza-

tion vectors.

Using
d

dt
â~kσ(t) = −iωkâ~kσ(t) (A.33)
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according to Eq. (4.64), we calculate from Eq. (A.28)

1

c

∂

∂t
~̂A(~r, t) =

∫

d3k

√
~ωk

2πi

∑

σ=1,2

(

â~kσ(t)e
i~k·~r − â†~kσ(t)e

−i~k·~r
)

~eσ(~k) , (A.34)

from which follows

(

1

c

∂

∂t
~̂A(~r, t)

)2

= − ~

(2π)2

∫∫

d3k d3k′
√
ωkωk′

∑

σ,σ′=1,2

~eσ′(~k′) · ~eσ(~k)

×
(

â~k′σ′(t)e
i~k′·~r − â†~k′σ′

(t)e−i~k′·~r
)

×
(

â~kσ(t)e
i~k·~r − â†~kσ(t)e

−i~k·~r
)

. (A.35)

We then calculate

∫

d3r ~̂E2(~r, t) =

∫

d3r

(

1

c

∂

∂t
~̂A(~r, t)

)2

=

∫

d3k 2π~ωk

[

∑

σ=1,2

(

â~kσ(t)â
†
~kσ
(t) + â†~kσ(t)â~kσ(t)

)

(A.36)

−
∑

σ,σ′=1,2

~eσ′(−~k) · ~eσ(~k)
(

â
−~kσ′(t)â~kσ(t) + â†

−~kσ′
(t)â†~kσ(t)

)

]

according to the quantized version of Eq. (4.53). In combination with
Eq. (A.33) and the expression (4.60) for the mass parameter, this alto-
gether yields

Ĥ =
1

8π

∫

d3r
(

~̂E2(~r, t) + ~̂B2(~r, t)
)

=

∫

d3k
∑

σ=1,2

~ωk

2

(

â~kσ(t)â
†
~kσ
(t) + â†~kσ(t)â~kσ(t)

)

. (A.37)

Problems of Chapter 6

6.1 We start with the identities

b̂†~k′σ′
b̂~k′σ′ â~kσ = −b̂†~k′σ′

â~kσ b̂~k′σ′ = â~kσ b̂
†

~k′σ′
b̂~k′σ′ , (A.38)

b̂†~k′σ′
b̂~k′σ′ â

†

~kσ
= −b̂†~k′σ′

â†~kσ b̂~k′σ′ = â†~kσ b̂
†

~k′σ′
b̂~k′σ′ , (A.39)
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which result from the anticommutation rules (6.130). Similarly, using also
Eq. (6.128), we obtain

â†~k′σ′
â~k′σ′ â~kσ = −â†~k′σ′

â~kσâ~k′σ′

=
(

â~kσâ
†
~k′σ′
− δ~k~k′δσσ′

)

â~k′σ′ , (A.40)

â†~k′σ′
â~k′σ′ â

†

~kσ
= −â†~k′σ′

(

â†~kσâ~k′σ′ − δ~k~k′δσσ′

)

= â†~kσâ
†
~k′σ′

â~k′σ′ + δ~k~k′δσσ′ â†~k′σ′
. (A.41)

This yields the commutators

[

â†~k′σ′
â~k′σ′ , â~kσ

]

= −δ~k~k′δσσ′ â~kσ , (A.42)
[

â†~k′σ′
â~k′σ′ , â

†

~kσ

]

= δ~k~k′δσσ′ â†~kσ , (A.43)
[

b̂†~k′σ′
b̂~k′σ′ , â~kσ

]

=
[

b̂†~k′σ′
b̂~k′σ′ , â

†
~kσ

]

= 0 (A.44)

for all ~k,~k′, σ, σ′. Using the expression (6.135) for the Hamiltonian, the
Heisenberg equations describing the time evolution of the operators â~kσ
and â†~kσ are then simplified as

d

dt
â~kσ =

i

~

[

Ĥ, â~kσ

]

=
∑

~k′

∑

σ′=1,2

iωk′

[

â†~k′σ′
â~k′σ′ + b̂†~k′σ′

b̂~k′σ′ , â~kσ

]

= −iωkâ~kσ , (A.45)

d

dt
â†~kσ =

i

~

[

Ĥ, â†~kσ

]

=
∑

~k′

∑

σ′=1,2

iωk′

[

â†~k′σ′
â~k′σ′ + b̂†~k′σ′

b̂~k′σ′ , â
†
~kσ

]

= iωkâ
†

~kσ
. (A.46)

Their general solutions are straightforwardly calculated and agree perfectly
with the time dependence that was involved in the definitions (6.124) and
(6.125) of those creation and annihilation operators. This agreement can
also be shown for the antiparticle operators b̂~kσ, b̂

†

~kσ
in a perfectly analogous

manner.


