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Chapter 1

Quantum statistical physics

1.1 Ergodicity of a classical gas

We consider a dilute gas of some N ∼ 105 . . . 1010 classical particles that are con-
fined in some finite region in space. A typical example of the classical Hamiltonian
that governs this system is written as

H ≡ H(r1,p1, . . . , rN ,pN) =

N
∑

i=1

(

p2i
2m

+ V (ri)

)

+
1

2

N
∑

i 6=j=1

U(ri − rj) . (1.1)

Here ri = (xi, yi, zi) ∈ R3 represents the position and pi = (pxi, pyi, pzi) ∈ R3 the
momentum of the particle i = 1, . . . , N , m is the mass of the particles, V (r) is
the external confinement potential that the particles experience at position r, and
U(ri−rj) ≡ U(|ri−rj|) represents a two-body interaction potential between two
particles at positions ri and rj which effectively depends only on the distance
|ri − rj| between the particles. The equations of motion that result from this
classical Hamiltonian are given by

dri
dt

(t) =
∂H

∂pi
[r1(t),p1(t), . . . , rN(t),pN(t)] , (1.2)

dpi

dt
(t) = −∂H

∂ri
[r1(t),p1(t), . . . , rN(t),pN(t)] (1.3)

for all i = 1, . . . , N . For given initial conditions they generate a trajectory
[r1(t),p1(t), . . . , rN(t),pN (t)] that evolves within a 6N dimensional phase space
spanned by the position and momentum coordinates of the individual particles.

The symplectic structure of the equations of motion (1.2) and (1.3) gives rise
to Liouville’s theorem which essentially states that phase space volumes are pre-
served during the time evolution. That is, if we consider a subset Σ ⊂ R

6N

of the phase space with finite volume V = vol(Σ) > 0 and let this subset
evolve under the equations of motion (1.2) and (1.3) over a finite time t >

3
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0 (namely by evolving each individual initial point within Σ over that time),
then the resulting subset Σ′ ⊂ R

6N is generally different from Σ but has still
the same volume V = vol(Σ) = vol(Σ′). This theorem is essentially a con-
sequence of the fact that the variable transformation from the initial phase
space variables r1(0),p1(0), . . . , rN(0),pN(0) to the final phase space variables
r1(t),p1(t), . . . , rN(t),pN (t) is canonical and hence the Jacobian associated with
this variable transformation, which effectively enters into the calculation of the
evolved volume, is unity.

Owing to Liouville’s theorem as well as to the high dimensionality of the
phase space and the presence of chaos that generically arises within interacting
many-body systems — which implies that small deviations in the initial condi-
tions will (especially after two-body collisions) exponentially increase with the
evolution time — we can safely postulate ergodicity for our classical gas. Collo-
quially speaking, this means that over a sufficiently long evolution time t → ∞
each region in phase space is visited with the same frequency as any other re-
gion in phase space, provided the access to this region is not inhibited by general
conservation laws such as the conservation of total energy (in the case of Hamil-
tonians that do not explicitly depend on time, as is the case in Eq. (1.1)), of
total momentum (in the absence of an external confinement potential, V ≡ 0),
or of total angular momentum (in the presence of spherically symmetric confine-
ment potentials, V (r) ≡ V (|r|)). More precisely, if we consider an observable
f ≡ f(r1,p1, . . . , rN ,pN ) that depends on the individual positions and momenta
of the particles, the time average of that observable along a given trajectory is,
in the limit of long evolution times t → ∞, identical to the phase space average

of the observable within the accessible part of the phase space, i.e., within the
submanifold of the phase space that is characterized by the same values of the
system’s constants of motion as the trajectory under consideration. This ergod-
icity property implicitly assumes that there are no additional dynamical barriers
to the evolution of the trajectory in the phase space besides the constants of
motion of the system, which can safely be taken for granted in the case of dilute
and weakly interacting gases.

In practice, as confinement potentials can hardly be generated with perfect
spherical or cylindrical symmetry, only the total energy is generally assumed to
remain constant in the course of time evolution. Assuming that this total energy
equals E for the trajectory under consideration, the ergodicity postulate is then
formulated as

f ≡ lim
T→∞

1

T

∫ T

0

f [r1(t),p1(t), . . . , rN(t),pN(t)]dt (1.4)

=

∫

d3r1

∫

d3p1 · · ·
∫

d3rN

∫

d3pNρ(r1,p1, . . . , rN ,pN)f(r1,p1, . . . , rN ,pN)

for any observable f defined in the phase space of the many-body system, where
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we introduce by

ρ(r1,p1, . . . , rN ,pN) =
1

Ω
δ [E −H(r1,p1, . . . , rN ,pN)] (1.5)

the microscopic probability density to encounter the system at the phase space
point (r1,p1, . . . , rN ,pN) at some finite time t > 0, with

Ω =

∫

d3r1

∫

d3p1 · · ·
∫

d3rN

∫

d3pNδ [E −H(r1,p1, . . . , rN ,pN)] (1.6)

the phase space volume of the hypersurface at constant energy E. In other
words, the statistical average f of the observable f is essentially determined by
the absence of any information about the microscopic state of the system apart
from the total energy E. Eqs. (1.5) and (1.6) define the microcanonical ensemble

of the classical gas under consideration.
It is instructive to calculate the phase space volume Ω ≡ Ω(E,N) for the

special case of a non-interacting gas, i.e. with U ≡ 0, which is confined within a
container of (spatial) volume V . Neglecting the effect of gravity, the particles of
the gas are essentially freely moving within the container, which implies that the
Hamiltonian (1.1) is reduced to its kinetic term. This then yields

Ω(E,N) =
V N (2πmE)

3
2
N

Γ
(

3
2
N
)

E
, (1.7)

i.e. for a large number N of particles the phase space volume scales as Ω ∼ E
3
2
N

with the energy E of the system.

Problems

1.1 Show the validity of Eq. (1.7).

1.2 Quantum ergodicity

We now consider a quantum gas of N particles. The latter is described by a
wavefunction Ψt ≡ Ψt(r1, . . . , rN) ≡ 〈r1, . . . , rN |Ψt〉 which depends on the posi-
tions r1, . . . , rN of the individual particles and on the time t. Its time evolution
is governed by the Schrödinger equation

i~
∂

∂t
Ψt(r1, . . . , rN) = ĤΨt(r1, . . . , rN) (1.8)

where the quantum Hamiltonian Ĥ = H(r̂1, p̂1, . . . , r̂N , p̂N) can be obtained by
a direct quantization of the classical Hamiltonian H with p̂j ≡ −i~(∂/∂rj). and
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r̂j ≡ rj. This yields

Ĥ =
N
∑

j=1

(

− ~2

2m

∂2

∂r2j
+ V (ri)

)

+
1

2

N
∑

i 6=j=1

U(ri − rj) . (1.9)

as quantum analog of the classical Hamiltonian specified in Eq. (1.1).
In the case of a spatially confined gas, we can assume that the Hamiltonian Ĥ

exhibits a discrete spectrum of eigenenergies En with n ∈ N0 where the associated
orthonormal eigenfunctions Φn satisfy the eigenvalue equations

ĤΦn(r1, . . . , rN) = EnΦn(r1, . . . , rN) (1.10)

or alternatively, using the Dirac notation,

Ĥ|Φn〉 = En|Φn〉 . (1.11)

The Schrödinger equation (1.8) is therefore solved according to

|Ψt〉 =
∞
∑

n=0

Cne
−iEnt/~|Φn〉 (1.12)

where the coefficients
Cn = 〈Φn|Ψ0〉 (1.13)

are obtained from the expansion of the initial state |Ψ0〉 =
∑∞

n=0Cn|Φn〉 within
the eigenbasis of the Hamiltonian. This then yields

〈f̂〉t = 〈Ψt|f̂ |Ψt〉 =
∞
∑

n,n′=0

C∗
nCn′〈Φn|f̂ |Φn′〉ei(En−En′)t/~ (1.14)

as the expectation value of the hermitian operator f̂ ≡ f(r̂1, p̂1, . . . , r̂N , p̂N)
that corresponds to the quantum analog of the classical observable f defined in
the phase space of the many-body system. Performing a temporal average of
Eq. (1.14) and assuming that total energy is the only conserved quantity of the
system, which generally implies that En = En′ only if n = n′ due to the absence
of any additional (e.g. spherical) symmetry of the system, we obtain

〈f̂〉 ≡ lim
T→∞

1

T

∫ T

0

〈f̂〉tdt =
∞
∑

n=0

|Cn|2〈Φn|f̂ |Φn〉 (1.15)

for the average expectation value of f̂ .
To keep the analogy with the classical microcanonical ensemble as close as

possible, we may consider an initial quantum state Ψ0 which in the many-body
phase space forms a minimum-uncertainty wave packet that is centred around a
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p

q

Figure 1.1: Visualization of classical and quantum time evolution in the phase
space. A quantum minimum-uncertainty wave packet (illustrated by the blue cir-
cle in the upper left corner) evolves along the classical trajectory (shown by the
red arrow) that emanates from the wave packet’s central position and momentum
coordinates. It undergoes spreading due to the fact that the classical evolution of
the phase-space volume initially occupied by the wave packet becomes distorted
in the course of time evolution (as indicated by the distorted blue ellipse). The
green lines indicate the energy levels associated with the quantized eigenstates of
the system that effectively contribute to the decomposition of the wave packet in
the quantum eigenbasis of the system. According to the eigenstate thermalization
hypothesis, those eigenstates are essentially equidistributed around the surfaces
of constant eigenenergy in the phase space. The admixture of a given eigenstate
to the wave packet (the strength of which is indicated by the thickness of the
associated green line) then only depends on the phase-space overlap of the asso-
ciated eigenenergy surface with the wave packet, or, expressed in an alternative
manner, on the vicinity of this eigenenergy to the wave packet’s central energy.
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given set of initial positions r
(0)
1 , . . . , r

(0)
N and momenta p

(0)
1 , . . . ,p

(0)
N . As is seen

from Eq. (1.15), the crucial ingredient for determining the average expectation
values of quantum observables is then given by the set of expansion coefficients
Cn of this initial state within the eigenbasis of the Hamiltonian — or, conversely,
by the overlap of the eigenstates Φn with the specific region in phase space in
which this initial state is defined. While there is no rigorous analytical argument
that makes any statement about this overlap, numerical evidence obtained in
specific, numerically tractable contexts seems to confirm the so-called eigenstate

thermalization hypothesis1 for such a system. The latter states in this context
that the vast majority of the eigenstates Φn of this interacting and classically
chaotic quantum gas are expected to be equidistributed around the hypersurface
of constant energy En in the phase space, i.e., the overlap of any such eigenstate
with any specific phase space region should depend only on the comparison of
the associated eigenenergy En with the energy of the phase space region, but not
significantly on the particular state Φn itself.

In practice, the eigenstate thermalization hypothesis entitles us to substitute
|Cn|2 ≡ p(En) in Eq. (1.15), where p(En) would then corresponds to the admix-
ture of eigenstates with energy En to the initial state Ψ0. If this initial state
is well defined around a given classical phase space point that is characterized
by the total energy E, we can write p(En) ∝ δδE(E − En) for some energetic
uncertainty δE > 0 where δδE(E − En) represents a regularization of the Dirac
distribution with the width δE. This then finally yields

〈f̂〉 = Tr[ρ̂f̂ ] =
∞
∑

n=0

〈Φn|ρ̂f̂ |Φn〉 (1.16)

as statistical average of f̂ where we define by

ρ̂ =
1

g

∞
∑

n=0

δδE(E − En)|Φn〉〈Φn| =
1

g
δδE(E − Ĥ) (1.17)

the statistical density operator of the microcanonical ensemble. By normalization
we have

g =

∞
∑

n=0

δδE(E − En) (1.18)

which in the limit δE → 0 turns into the density of states

g =
∞
∑

n=0

δ(E −En) ≡ g(E,N) (1.19)

1J. M. Deutsch, Quantum statistical mechanics in a closed system, Phys. Rev. A 43, 2046
(1991); M. Srednicki, Chaos and quantum thermalization, Phys. Rev. E 50, 888 (1994).
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of the many-body quantum system. By semiclassical considerations one can show
that

g(E,N) ≃ Ω(E,N)

(2π~)3N
(1.20)

for large E and N (for which the density of states becomes extremely high and
therefore quasi-continuous), with Ω(E,N) being the classical phase space volume
at energy E given by Eq. (1.6). This expresses the Bohr-Sommerfeld quantization

rule which states that there is exactly one quantum state per Planck cell with
volume (2π~)3N in the N -particle phase space.

Clearly, choosing an initial state that is localized in phase space around well-
defined positions ri and momenta pi of the individual particles i = 1, . . . , N
generally violates the symmetry postulate associated with indistinguishable quan-
tum particles, which implies that the wavefunction must be fully symmetrized or
antisymmetrized in its coordinates r1, . . . , rN . While such a symmetrization or
antisymmetrization does not alter the implications of the eigenstate thermaliza-
tion hypothesis, it does affect the density of states of the system insofar as we
would have

g(E,N) ≃ Ω(E,N)

N !(2π~)3N
(1.21)

for large E and N , due to the restriction to the fully symmetrized or antisym-
metrized submanifold of the classical phase space. This consideration will become
important in the following.

Problems

1.2 Show the validity of Eq. (1.20) in the formal semiclassical limit ~ → 0.

1.3 Thermal equilibrium

Before dealing with the issue of quantum indistinguishability in more detail, let
us first consider the case of a system that is composed of two gases of (not
necessarily indistinguishable) quantum particles, which are denoted by A and B
and respectively contain NA and NB particles. These gases are supposed to be
separated from each other e.g. by some sort of wall, which means that no particle
from the gas A (or B) can penetrate into the gas B (or A). However, they can
exchange energy with each other e.g. through collisions of particles from either
side with the wall.

Assuming that this composed system exhibits quantum ergodicity and was
initially prepared in a state with total energy E, we can again describe average
expectation values of observables defined within this system through the statis-
tical density operator

ρ̂ =
1

g
δ(E − Ĥ) (1.22)
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where g is the density of eigenstates of this system at energy E and Ĥ denotes
its quantum Hamiltonian. The latter is written as

Ĥ = ĤA + ĤB + Ŵ (1.23)

where ĤX = HX(r̂
X
1 , p̂

X
1 , . . . , r̂

X
NX
, p̂X

NX
) with X = A or B denotes the internal

Hamiltonian of the gas A or B, respectively, which one would encounter in the
presence of mutual isolation of these gases from each other. Neglecting the rele-
vance of the internal (solid-state) degrees of freedom within the wall, the energetic
coupling between the two subsystems A and B can be modeled by an operator
of the generic form

Ŵ = W
(

r̂A1 , p̂
A
1 , . . . , r̂

A
NA
, p̂A

NA
, r̂B1 , p̂

B
1 , . . . , r̂

B
NB
, p̂B

NB

)

. (1.24)

While it technically depends on the positions r̂Xj and momenta p̂X
j of all parti-

cles (j = 1, . . . , NX) that are contained within the gases X = A and B, only a
tiny fraction of them do actually contribute to this coupling energy in practice,
namely those that happen to be located within a very small (typically nanomet-
ric) distance from the separating wall which mediates the transfer of energy. The
expectation value 〈Ŵ 〉 of this coupling operator can therefore be considered to be
negligibly small as compared to the expectation values of the internal Hamiltoni-
ans ĤA and ĤB of the two gases, provided the latter are prepared at a reasonably
finite (i.e. not ultra-low) total energy and within a reasonably large (i.e. not
ultra-small) volume. We therefore permit ourselves to neglect the contribution of
the coupling energy to the total Hamiltonian, which thence will be approximated
as Ĥ ≃ ĤA + ĤB in the expression (1.22) for the density operator. The latter
can then be expressed as

ρ̂ ≃ 1

g
δ(E − ĤA − ĤB) =

1

g

∫

dEAδ(EA − ĤA)δ(E − EA − ĤB) . (1.25)

We shall now consider an observable f̂ ≡ f(r̂A1 , p̂
A
1 , . . . , r̂

A
N , p̂

A
N) that is re-

stricted to the gas A, i.e., it only depends on the position and momentum oper-
ators of the particles that are contained within this particular subsystem. The
statistical average of its expectation value is then straightforwardly evaluated by
virtue of Eqs. (1.16) and (1.25) yielding

〈f̂〉 = Tr[ρ̂f̂ ] ≃ 1

g

∫

dEATr
[

f̂ δ(EA − ĤA)δ(E −EA − ĤB)
]

=
1

g

∫

dEATrA

[

f̂ δ(EA − ĤA)
]

TrB

[

δ(E − EA − ĤB)
]

. (1.26)

Here TrX denotes the partial trace associated with the subsystem X = A or B,
which can be defined in terms the orthonormal eigenfunctions ΦX

n of ĤX (or in
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terms of any other orthonormal set of basis functions spanning the Hilbert space
of the subsystem X) as

TrX [Ô] =
∑

n

〈ΦX
n |Ô|ΦX

n 〉 (1.27)

for any operator Ô acting within that subsystem. Equation (1.26) exploits the
identity

Tr[F̂AĜB] = TrA[F̂A]TrB[ĜB] (1.28)

for any product of operators F̂A and ĜB that are restricted to the Hilbert spaces
of the subsystems A and B, respectively, which can be explicitly shown by eval-
uating the trace of F̂AĜB within the product basis formed by combining the
eigenfunctions ΦA

n and ΦB
n′ for every possible pair (n, n′). Utilizing now the ex-

pression

gX(EX) = TrX

[

δ(EX − ĤX)
]

(1.29)

for the density of eigenstates within the (isolated) subsystem X = A or B, we
finally obtain

〈f̂〉 = TrA[ρ̂Af̂ ] (1.30)

from Eq. (1.26) with the effective density operator

ρ̂A =
1

g

∫

dEAδ(EA − ĤA)gB(E −EA) =
1

g
gB(E − ĤA) (1.31)

of the subsystem A.
As a particularly relevant special case, we shall now consider the observable

f̂ = δ(EA − ĤA) whose expectation value yields the probability density to en-
counter the partial energy EA within the subsystem A. The statistical average
of this probability density is evaluated from Eqs. (1.30) and (1.31) as

PA(EA) = 〈δ(EA − ĤA)〉 =
1

g

∑

n

gB(E − EA
n )δ(EA − EA

n )

=
1

g
gB(E −EA)gA(EA) , (1.32)

where we evaluate the partial trace of the subsystem A within the eigenbasis
of the corresponding Hamiltonian ĤA whose eigenenergies are denoted by EA

n .
Insight into the general behaviour of this function can be obtained from the
typical scaling law

gX(EX) ∝ E
3
2
NX

X (1.33)

of the density of states for very weakly interacting (isolated) three-dimensional
gases containing NX particles, which results from the expression (1.7) of the clas-
sical phase space volume at the energy EX in combination with the identification
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(1.20) (or (1.21)). This yields

PA(EA) ∝ E
3
2
NA

A (E − EA)
3
2
NB . (1.34)

It is now straightforward to convince oneself that PA represents an extremely
strongly peaked function in the thermodynamic limit of large numbers of particles
NA, NB & 105 . . . 1010 within the two subsystems, which exhibits a very sharp
maximum at some well-defined energy EA within the interval 0 < EA < E.
Using the notation

g′X(E) ≡
dgX
dEX

∣

∣

∣

∣

EX=E
, (1.35)

this particular maximum can be determined from the property

0 =
dPA

dEA
(EA) =

gB(E − EA)g
′
A(EA)− gA(EA)g

′
B(E − EA)

g
(1.36)

from which we obtain the relation

g′A(EA)

gA(EA)
=
g′B(E − EA)

gB(E − EA)
(1.37)

or, equivalently,
d

EA
ln gA

∣

∣

∣

∣

EA=EA

=
d

EB
ln gB

∣

∣

∣

∣

EB=E−EA

. (1.38)

It is now appropriate to introduce the concepts of entropy and temperature.
The entropy of the subsystem X = A or B can be defined as

SX(EX) = kB ln [δEgX(EX)] (1.39)

as a function its energy EX , where gX(EX) denotes again its density of states
at EX and kB ≃ 1.38 × 10−23 J/K is the Boltzmann constant. δE represents
a typical scale for the uncertainty of the total energy which is associated with
the preparation of the initial state of the system as was discussed in Section 1.2.
exp[SX(EX)/kB] yields then a characteristic scale for the number of many-body
eigenstates that are effectively involved in the time evolution of the (isolated)
system X , provided the latter was initially prepared in a wave packet state that
is sharply defined about the energy EX with the uncertainty δE. The temperature

of the subsystem X is then obtained as

TX(EX) =
1

kBβX(EX)
(1.40)

where we define

βX(EX) =
1

kB

∂SX

∂EX
(EX) . (1.41)
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The condition (1.38) can then be rewritten as

TA(EA) = TB(E − EA) , (1.42)

which simply implies that the two parts of the system are thermalized, i.e., they
exhibit the same temperature.

In the special case of an ideal, i.e. non-interacting, gas within the subsystem
X = A orB, we can obtain its density of states at the energy EX by combining the
expression (1.7) of the classical phase space volume at EX with the identification
(1.20). This yields

gX(EX) = C(NX)E
3
2
NX−1

X (1.43)

for some positive prefactor C(NX) > 0 which is not important in the following.
The associated entropy is then given by

SX(EX) = kB ln
[

δE C(NX)E
3
2
NX−1

X

]

≃ 3

2
NXkB lnEX + kB ln[δE C(NX)](1.44)

using NX ≫ 1, and we therefore obtain

TX(EX) =
2EX

3NXkB
(1.45)

for the temperature within this gas. The thermalization condition TA(EA) =
TB(EB) can then be rewritten as EA/NA = EB/NB, which essentially states that
each particle of the system has, on average, the same energy. This yields

EA =
NA

NA +NB
E (1.46)

as explicit expression for the most probable partial energy to be encountered
within the subsystem A.

Let us now suppose that the subsystem B is much larger than the subsystem
A, insofar as we have NB ≫ NA and hence, by virtue of Eq. (1.46), EA ≪
E. It is tempting to simplify the expression for the effective density operator
(1.31) for the subsystem A in that case, namely by performing a Taylor series
expansion of gB(EB = E − ĤA) about EB = E. We should note, however, that
gB(EB) generally increases as a power law ∝ Eν

B with an extremely large exponent
ν = 3NB/2 ≫ 1. Hence, a Taylor series about EB = E would yield a good
approximation of gB(EB) only within an extremely small energy window around
E, namely for |EB−E| < ∆E with ∆E ∼ E/NB, which would be too small to be
of any usefulness in practice. As we can see from the expressions (1.39) and (1.44),
the entropy of the subsystem B, on the other hand, is a rather well-behaved
(namely logarithmic) function of EB, for which a Taylor series expansion would
yield a reasonable approximation within a finite energy interval. We therefore
rewrite Eq. (1.31) as

ρ̂A =
1

g
gB(E − ĤA) =

1

g
exp

[

ln gB(E − ĤA)
]

(1.47)
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and expand
ln gB(E − ĤA) ≃ ln gB(E)− βB(E)ĤA (1.48)

in first order in ĤA in the exponent, using βB(EB) = ∂ ln gB(EB)/∂EB according
to Eq. (1.41). This yields

ρ̂A =
gB(E)

g
exp

[

−βB(E)ĤA

]

. (1.49)

These considerations finally give rise to the canonical ensemble which applies
to a quantum gas that is not isolated but energetically coupled to a large reservoir
of heat. Identifying the latter with the subsystem B and the quantum gas with
the subsystem A, we can infer from the above reasoning that average expectation
values of observables defined within such a gas are described by the density
operator

ρ̂ =
1

Z
e−βĤ (1.50)

where Ĥ denotes the Hamiltonian of the quantum gas and T = 1/(kBβ) is the
temperature of the reservoir. From the normalization condition Tr[ρ̂] = 1 that
any density operator has to satisfy, we determine the prefactor as

Z = Tr
[

e−βĤ
]

, (1.51)

which is also called partition function of the canonical ensemble.
In contrast to the microcanonical ensemble discussed in Section 1.2, the energy

of the quantum gas under consideration is no longer constant but may fluctuate
due to the coupling of the system with the reservoir. It is instructive to compare
the root-mean-square (rms) width ∆H of these fluctuations with the average

energy 〈Ĥ〉 contained within the gas. We assume for this purpose again that we
are dealing with a rather weakly interacting gas, such that we can approximately
express the scaling of the density of states with its energy E as

g(E) =
∑

n

δ(E − En) = C(N)E
3
2
N−1 , (1.52)

where En with n ∈ N0 are the eigenenergies of the quantum gas and C(N) > 0
is a positive prefactor that depends on the number N of particles within the gas.
This yields

(

∆H

〈Ĥ〉

)2

=
〈Ĥ2〉 − 〈Ĥ〉

2

〈Ĥ〉
2 =

2

3N
≪ 1 (1.53)

As a consequence, fluctuations of the energy within the gas become relatively
unimportant in the thermodynamic limitN → ∞ as compared to its mean energy.
Hence, given the fact that N & 105 . . . 1010, the canonical ensemble yields, for all
practical purposes, identical predictions as the microcanonical ensemble for the
mean value of observables f̂ ≡ f(Ĥ) that can be expressed as functions of the
Hamiltonian.
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Problems

1.3 Show the validity of Eq. (1.53).

1.4 Bosons and fermions

While a generic gas such as ordinary air may be constituted by atoms and/or
molecules that belong to several species, we shall, in the following, focus on
the special case of a monoatomic gas containing atoms of only one species, e.g.
87Rb, which is most relevant for the realization of Bose-Einstein condensates. We
are then dealing with a system of indistinguishable quantum particles that have
identical properties, which implies that the many-body Hamiltonian governing
the time evolution of this system is invariant under permutations of particles.
The symmetry postulate of quantum mechanics then states that it is as a mat-
ter of principle strictly impossible to distinguish any particle in this many-body
system with respect to the others. This is formally expressed by the fact that
the wavefunction describing a physically admissible state of the system has to
be either fully symmetric or fully antisymmetric with respect to the permuta-
tion of particles, in which case the latter would respectively be named bosons or
fermions.

It is known from the theory of elementary particles that the quarks and leptons
are fermions. Their wavefunctions are given by Dirac spinors which feature a
half-integer spin, namely spin 1/2. Exchange particles such as the photon as well
as the W and Z bosons, on the other hand, can be interpreted as the quanta
that arise from the quantization of a classical field theory (e.g., electromagnetic
theory in the case of photons) and are consequently bosons. They are described
by a four-potential (Aν) ≡ (A0,A) which generally exhibits three independent
components2 due to the Lorenz gauge ∂

∂t
A0(r, t) +∇ ·A(r, t) = 0. This implies

that they have an integer spin, namely spin 1.
In order to determine the bosonic or fermionic nature of a composite particle,

such as an atom or molecule, we need to count the number of elementary fermionic
particles by which it is constituted. If this number is odd, we are dealing with a
fermion, while in the opposite case of an even number of fermionic constituents the
particle under consideration would behave as a boson. The proton, for instance, is
a fermion as it is constituted by three quarks. It contains an uncountable number
of gluons and virtual quark-antiquark pairs as well, but those do not alter the fact
that its total number of fermionic constituents is odd. Exactly the same holds
true for the neutron. The hydrogen atom, on the other hand, is a boson as it
is formed by a proton and an electron and therefore contains an even number of
fermionic constituents. Indeed, a physically admissible wavefunction describing

2This is different for massless exchange particles such as the photon, whose associated four-
potential features only two independent components. They nevertheless have spin 1 as well.
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two hydrogen atoms, which has to be fully antisymmetric in the coordinates of all
the involved elementary fermionic particles (i.e., the quarks and electrons in this
case), will undergo an even number of sign changes when the sets of fermionic
coordinates constituting the two atoms are interchanged one by one, which in
effect implies that it keeps its sign under the exchange of the two atoms.

As a fully equivalent alternative to the counting of elementary fermionic con-
stituents, we can also infer the bosonic or fermionic nature of a particle species
from its total spin, using basic rules for the addition of angular momentum opera-
tors. A half-integer total spin necessarily arises from an odd number of fermionic
constituents and therefore corresponds to a fermionic particle, while in the case
of an integer total spin we are dealing with a boson. This is the essence of the
spin-statistics theorem.

Let us now consider a quantum gas consisting of N indistinguishable particles
that are of bosonic or fermionic nature. For the sake of simplicity, we assume that
they all feature the same internal spin state, which implies that we can effectively
neglect their spin degree of freedom in the following. If (φk)k∈N0 with φk : R

3 → C

represents an orthonormal basis of the single-particle Hilbert space of the system,
we can construct properly normalized basis states of the many-body system under
consideration through

Φk1···kN (r1, . . . , rN) =
1

√

N !
∏∞

k=0 nk!

∑

π∈ΠN

(±1)πφkπ(1)
(r1) · · ·φkπ(N)

(rN) (1.54)

in the case of bosons (upper sign) and fermions (lower sign). Here, ΠN represents
the set of all permutations π : {1, . . . , N} → {1, . . . , N} of the first N positive
natural numbers. Their sign can be defined through

(−1)π ≡
N
∏

n=2

n−1
∏

n′=1

π(n)− π(n′)

n− n′ . (1.55)

It equals 1 for a permutation π that can be decomposed into an even number of
elementary transpositions, while it is −1 if this number is odd. nk denotes the
number of times that k is listed in the set of quantum numbers {k1, . . . , kN}. To
avoid multiple listing of identical states in the many-body basis, we impose the
restriction k1 ≥ k2 ≥ . . . ≥ kN in the case of bosons as well as k1 > k2 > . . . > kN
in the case of fermions. The latter choice is motivated from the Pauli exclusion

principle for fermions stating that Φ−
k1···kN (r1, . . . , rN) = 0 for all r1, . . . , rN if

ki = kj for a pair of indices 1 ≤ i < j ≤ N , as we can infer from Eq. (1.54). This
yields binary occupancies nk ∈ {0, 1} in the case of fermions, while we would
have nk ∈ N0 for bosons.

It is convenient to express the above many-body basis states as |Φk1,...,kN 〉 ≡
|n0, n1, . . .〉 in terms of the occupancies nk that are associated with the chosen
single-particle basis (φk)k∈N0. The collection of such Fock states |n0, n1, . . .〉 for all
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possible values of nk that respect the bosonic or fermionic nature of the particle
species under consideration (but are not restricted to a given total number of
particles) span the Fock space of the many-body system under consideration.
Within this Fock space we introduce creation and annihilation operators â†k, âk,
which respectively create or remove a particle on the one-body state φk. In the
case of bosons they are defined as

âk|n0, n1, . . . , nk, . . .〉 =
√
nk|n0, n1, . . . , nk − 1, . . .〉 , (1.56)

â†k|n0, n1, . . . , nk, . . .〉 =
√
nk + 1|n0, n1, . . . , nk + 1, . . .〉 , (1.57)

which implies the commutation relations

[âk, â
†
k′] ≡ âkâ

†
k′ − â†k′ âk = δkk′ (1.58)

as well as [âk, âk′] = 0 = [â†k, â
†
k′] for all k, k

′ ∈ N0. For fermions we define them
according to

âk|n0, . . . , nk, . . .〉 = (−1)n0+...+nk−1nk|n0, . . . , nk − 1, . . .〉 , (1.59)

â†k|n0, . . . , nk, . . .〉 = (−1)n0+...+nk−1(1− nk)|n0, . . . , nk + 1, . . .〉 , (1.60)

in order to account for the sign convention that is adopted in the definition
(1.54) of the fermionic basis states. They therefore satisfy the anticommutation
relations

{âk, â†k′} ≡ âkâ
†
k′ + â†k′ âk = δkk′ (1.61)

as well as {âk, âk′} = 0 = {â†k, â
†
k′} for all k, k′.

While the above creation and annihilation operators are intimately connected
with a given (discrete) single-particle basis, we can generalize the underlying
concept to the (continuous) position space through the introduction of the field

operators

ψ̂†(r) =

∞
∑

k=0

φ∗
k(r)â

†
k and ψ̂(r) =

∞
∑

k=0

φk(r)âk , (1.62)

which respectively create and annihilate a particle at the position r ∈ R3. As can
be straightforwardly inferred from the above definition in combination with the
orthogonality and completeness of the single-particle basis (φk)k∈N0, these field
operators satisfy for all r, r′ ∈ R

3 the commutation relations

[ψ̂(r), ψ̂†(r′)] = δ(r− r′) (1.63)

and [ψ̂(r), ψ̂(r′)] = 0 = [ψ̂†(r), ψ̂†(r′)] for bosons as well as the anticommutation
relations

{ψ̂(r), ψ̂†(r′)} = δ(r− r′) (1.64)
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and {ψ̂(r), ψ̂(r′)} = 0 = {ψ̂†(r), ψ̂†(r′)} for fermions. They allow one to repre-
sent the many-body equivalent of single-particle observables in a rather straight-
forward and compact manner. Consider, for instance, a one-body observable
A ≡ A(r,p) (such as the energy of a particle within some confinement potential)
which is most generally defined in terms of the position and momentum opera-
tors of the particle. Its quantum many-body equivalent (which would then yield
the total single-particle energy of a quantum gas in the above example) is then
expressed as

Â =
N
∑

j=1

A(r̂j, p̂j) =

∫

d3r ψ̂†(r)A

(

r,
~

i

∂

∂r

)

ψ̂(r) (1.65)

in terms of the field operators, as can be shown by applying this operator onto the
many-particle basis states (1.54) using the decomposition (1.62) in combination
with Eqs. (1.56) and (1.57) for bosons as well as with Eqs. (1.59) and (1.60) for
fermions. Similarly, the many-body equivalent of a two-body observable B ≡
B(r, r′) = B(r′, r) that is expressed in terms of the positions r and r′ of the
two particles (such as the interaction energy between two particles) is, for both
bosons and fermions, obtained as

B̂ =
1

2

N
∑

i 6=j=1

B(ri, rj) =
1

2

∫

d3r

∫

d3r′ψ̂†(r)ψ̂†(r′)B(r, r′)ψ̂(r′)ψ̂(r) (1.66)

in terms of the field operators. We can consequently rewrite the expression (1.9)
for a typical many-body Hamiltonian featuring a generic two-body interaction as

Ĥ =

∫

d3rψ̂†(r)

(

− ~2

2m

∂2

∂r2
+ V (r)

)

ψ̂(r) (1.67)

+
1

2

∫

d3r

∫

d3r′U(r − r′)ψ̂†(r)ψ̂†(r′)ψ̂(r′)ψ̂(r) .

As was already indicated at the end of Section 1.2, the above symmetry con-
siderations have dramatic consequences on the definition of the quantum micro-
canonical ensemble. Indeed, if we apply the line of reasoning that we developed
within Section 1.2 to a system of N indistinguishable particles of, say, bosonic
(or fermionic) nature, the minimum-uncertainty wave packet that we considered

in that section to be centred about the initial positions r
(0)
1 , . . . , r

(0)
N and mo-

menta p
(0)
1 , . . . ,p

(0)
N in the classical phase space ought to be fully symmetrized

(or antisymmetrized) with respect to permutations of particles, in close analogy
with the expression (1.54). Consequently, the time evolution of this wave packet
takes place within the fully symmetric (or antisymmetric) subspace of the Hilbert
space, which implies that the many-body eigenstates Φn in terms of which the
wave packet is represented according to Eq. (1.12) belong to that subspace, too.
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The phase space that is explored by this wave packed in the course of time evo-
lution is then effectively restricted to a desymmetrized simplex of the total phase
space volume (1.6) of the hypersurface at constant energy. This in turn reduces
the density of quantum states by the factor N !, as expressed within Eq. (1.21).

It is insightful to stress that the occurrence of this latter prefactor 1/N ! is
not a genuinely quantum feature per se. Indeed, the reduction of the phase space
volume to a desymmetrized simplex would effectively arise also in the classical
microcanonical ensemble expressed by Eq. (1.5), simply because in a system of in-
distinguishable particles we are practically unable to discriminate a specific micro-
scopic measurement outcome (r1,p1, . . . , rN ,pN) given by the positions and mo-
menta of the particles from any of its permutations (rπ(1),pπ(1), . . . , rπ(N),pπ(N)).
This implies that as a matter of practice we would have to replace the considered
observable through

f(r1,p1, . . . , rN ,pN) 7→
∑

π∈ΠN

f
(

rπ(1),pπ(1), . . . , rπ(N),pπ(N)

)

= N !f(r1,p1, . . . , rN ,pN) (1.68)

in the expression (1.4) for its statistical average (taking into account that f ought
to be invariant under permutations of particles to represent a valid observable in
a system of indistinguishable particles) — or, alternatively, that we would have
to divide Ω by N ! in the expression (1.5) for the microscopic probability density
that constitutes the classical microcanonical ensemble, in perfect analogy with
the corresponding quantum system.

Despite this apparent similarity, classical and quantum systems of indistin-
guishable particles do not exhibit identical statistical properties. This is spec-
tacularly evidenced in the regime of quantum degeneracy, where the number of
particles contained in the system becomes comparable to or even larger than the
number of accessible single-particle states at a given total energy (or at a given
temperature of the reservoir, in the framework of the canonical ensemble). Con-
sider, for instance, a system of two particles that can occupy two single-particle
states A or B with equal probability. If these particles are distinguishable, the
system can be in four different two-particle states, namely AA, AB, BA, and
BB (where the first letter denotes the state occupied by the first particle and
the second letter refers to the second particle), which implies that the probability
for each one of those states to be encountered equals 1/4. From a classical point
of view, these considerations would also hold for indistinguishable particles, with
the only amendment that one would not be able to discriminate the two-particle
states AB and BA in practice. The state AA, however, would still be encountered
with the probability 1/4.

Owing to the symmetry postulate, the situation is quite different in a system
of two quantum indistinguishable particles. If these particles are bosons, we would
encounter with equal probability the states AA, BB, and AB, where the latter
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corresponds to the symmetric superposition of the two-body states AB and BA
and should actually read AB+BA (up to a normalization factor). Consequently,
the probability to detect the system in the state AA equals 1/3 instead of 1/4.
If we were dealing with fermions instead, this probability would vanish due to
the Pauli principle, and the system could be encountered in one single state only,
namely AB ≡ AB−BA corresponding to the antisymmetric superposition of the
two-body states AB and BA.

The above enhancement effect in the bosonic case is dramatically amplified
if we increase the number of particles and states. In a system of three indis-
tinguishable particles that can occupy three one-body states A, B, or C with
equal probability, classical statistical considerations would predict the probabil-
ity 1/27 to detect it in the state AAA, as there are 33 = 27 different possibilities
to distribute three particles among three states. This number is significantly re-
duced if we are dealing with bosonic quantum particles, in which case the system
can be found with equal likelihood in the states AAA, BBB, CCC, AAB ≡
AAB + ABA + BAA (and similarly for the others), AAC, BBA, BBC, CCA,
CCB, as well as ABC ≡ ABC+BCA+CAB+BAC+ACB+CBA. The prob-
ability to detect the system in the state AAA hence equals 1/10 and is therefore
dramatically increased as compared to the prediction 1/27 that is based on clas-
sical intuition. This Bose enhancement lies at the heart of Bose-Einstein conden-
sation. Again, the fermionic counterpart of this system features only one possible
three-particle state, namely ABC ≡ ABC+BCA+CAB−BAC−ACB−CBA.



Chapter 2

Bose-Einstein condensation

2.1 The grand canonical ensemble

In principle, the canonical ensemble discussed in Section 1.3 appears perfectly
appropriate to describe the cooling process of a gas of neutral atoms. Indeed,
as shall be detailed in Chapter 3, those atoms are, for that purpose, confined in
trapping configurations that are created by magnetic fields or laser fields in high
vacuum. Cooling of the gas is then achieved via its interaction with a suitably
tuned electromagnetic radiation which effectively plays the role of an external
heat bath with which the atoms can exchange energy.

From the point of view of analytical calculations, however, the canonical en-
semble is not well suited for the evaluation of statistical expectation values in the
context of indistiguishable quantum particles. As a matter of fact, those expec-
tation values are most conveniently calculated in the Fock space that is defined
with respect to a suitably chosen single-particle basis, and the restriction to a
fixed total number of particles that is inherent in the canonical ensemble gives
then rise to rather involved combinatorial expressions which are hard to deal with.
We shall therefore consider a slightly modified trapping and cooling scenario with
respect to the experimental reality, namely where the atomic gas is in permanent
contact with a fictitious reservoir of particles, and then rely on the general ex-
pectation that predictions obtained within this particular framework ought to
be equivalent, at least in the thermodynamic limit, to those resulting from the
canonical ensemble. Note that this distinction between a “system” containing
the gas to be cooled and the surrounding thermal “environment” with which the
gas exchanges energy and particles can be totally artificial, to the extent that no
true barrier may exist between the two.

In analogy with Section 1.3, the system and the environment, which will
respectively be named A and B in the following, are considered to constitute
two subsystems of a global system of indistinguishable quantum particles that
is thermally isolated. Formally, we define these subsystems through two mu-

21
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tually orthogonal and complementary projectors in the one-body Hilbert space
that cover disjoint regions in configuration space. Those projectors can be rep-
resented in terms of sets of mutually orthogonal and properly normed one-body
basis functions (φA

0 , φ
A
1 , . . .) and (φB

0 , φ
B
1 , . . .) associated with the subsystems A

and B, respectively, such that the union of these two sets constitutes an or-
thonormal basis of the entire one-particle Hilbert space. The construction of
fully symmetrized or antisymmetrized many-particle basis functions upon this
one-body basis gives then rise to the Fock states |nA

0 , n
A
1 , . . . , n

B
0 , n

B
1 , . . .〉 that

are parametrized in terms of the occupancies nX
k of the one-body states φX

k (for
X = A or B), which are non-negative integer numbers in the case of bosons and
binary numbers in the case of fermions.

Denoting the associated creation and annihilation operators as â†0, â0, â
†
1, â1, . . .

as well as b̂†0, b̂0, b̂
†
1, b̂1, . . . for the thereby defined subsystems A and B, respec-

tively, we can, in analogy with the expression (1.23), propose a rather generic
form of the many-body Hamiltonian governing this system, namely

Ĥ = ĤA(â
†
0, â0, â

†
1, â1, . . .) + ĤB(b̂

†
0, b̂0, b̂

†
1, b̂1, . . .)

+Ŵ (â†0, â0, â
†
1, â1, . . . , b̂

†
0, b̂0, b̂

†
1, b̂1, . . .) (2.1)

where the operators ĤA and ĤB denote the partial energies in the subsystems A
and B, respectively, and therefore depend only on the creation and annihilation
operators defined for those subsystems. The operator Ŵ describes the exchange
of particles between the two subsystems and can, for instance, be modeled as

Ŵ =
∑

k,l

tkl

(

â†k b̂l + b̂†l âk

)

(2.2)

in terms of one-body matrix elements tkl that characterize the rate of passage
of a particle from the states φA

k to the states φB
l or vice versa. Provided the

two subsystems A and B are rather sharply defined in configuration space, we
can safely assume that the contribution of this coupling operator Ŵ to the mean
value of the total energy is negligible as compared to the respective contributions
of ĤA and ĤB, owing to the fact that only particles that happen to be very close
to this (possibly purely virtual) barrier between the subsystems will effectively
contribute to a non-vanishing mean value of Ŵ .

As in Section 1.3, this latter consideration substantially facilitates the calcula-
tion of the statistical expectation values of operators that are exclusively defined
within one of the two subsystems. The starting point for such a calculation is, as
usual, the assumption of quantum ergodicity and the presence of a microcanoni-
cal ensemble within the entire system. In Fock space, the corresponding density
operator is written as

ρ̂ =
1

g
δ(E − Ĥ)δN,N̂ (2.3)
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with g = Tr[δ(E−Ĥ)δN,N̂ ]. The Kronecker delta in the particle number operator

N̂ is required in order to restrict traces in Fock space, which are evaluated as

Tr[Â] =
∑

nA
0 ,nA

1 ,...

∑

nB
0 ,nB

1 ,...

〈nA
0 , n

A
1 , . . . , n

B
0 , n

B
1 , . . . |Â|nA

0 , n
A
1 , . . . , n

B
0 , n

B
1 , . . .〉 (2.4)

for generic many-body operators Â, to those Fock states that feature exactly N
particles. Decomposing N̂ = N̂A + N̂B with

N̂X =
∞
∑

k=0

x̂†kx̂k (2.5)

for X = A or B (and correspondingly x = a or b) and approximating the Hamil-
tonian (2.1) as Ĥ ≃ ĤA + ĤB within the argument of Dirac’s delta function in
Eq. (2.3) allow us to rewrite this expression as

ρ̂ ≃ 1

g

N
∑

NA=0

∫

dEAδ(EA − ĤA)δNA,N̂A
δ(E − EA − ĤB)δN,NA+N̂B

. (2.6)

Let us now consider an observable represented by a many-body operator f̂
that is exclusively defined within the subsystem A, i.e., we can formally express
it as f̂ ≡ f̂(â†0, â0, â

†
1, â1, . . .). Exploiting the identity (1.28), we can decompose

Tr
[

f̂ δ(EA − ĤA)δNA,N̂A
δ(E − EA − ĤB)δN,NA+N̂B

]

= TrA

[

f̂ δ(EA − ĤA)δNA,N̂A

]

gB(E − EA, N −NA) (2.7)

with
gX(EX) = TrX

[

δ(EX − ĤX)δNX ,N̂X

]

(2.8)

the density of states within the subsystem X = A or B, where

TrXÂ =
∑

nX
0 ,nX

1 ,...

〈nX
0 , n

X
1 , . . . |Â|nX

0 , n
X
1 , . . .〉 (2.9)

denotes the partial trace of an operator Â defined within the subsystem X . The
statistical average of the expectation value of this operator f̂ is then evaluated
as

〈f̂〉 = Tr[ρ̂f̂ ] = TrA[ρ̂Af̂ ] (2.10)

using Eqs. (2.6)–(2.9), where we define the effective density operator

ρ̂A =
1

g
gB(E − ĤA, N − N̂A) (2.11)
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for the subsystem A.
We now make use of the fact that the subsystem B is supposed to repre-

sent a particle reservoir for the “system” A that describes the trapped gas of
atoms. It can therefore be considered to be much larger in volume than the lat-
ter, to the extent that we have 〈N̂A〉 ≪ 〈N̂B〉 ≃ N and 〈ĤA〉 ≪ 〈ĤB〉 ≃ E for
the corresponding expectation values of the particle numbers and the energies.
This reasoning allows us to simplify the expression (2.11) through a Taylor series
expansion to be carried out in ĤA and N̂A. Evidently, as the density of states
gB(EB, NB) features a rather singular power-law scaling ∝ E

3NB/2
B for large reser-

voir energies and populations, this Taylor series must not be carried out for gB
itself but for its logarithm corresponding to the reservoir’s entropy, which yields
in first order

ln gB(E − ĤA, N − N̂A) ≃ ln gB(E,N)− ∂ ln gB
∂E

(E,N)ĤA

−∂ ln gB
∂N

(E,N)N̂A . (2.12)

Using the definition (1.41)

βB(E,N) =
∂ ln gB
∂E

(E,N) =
1

kBTB
, (2.13)

where TB is the temperature of the reservoir, and defining by

µB(E,N) = − 1

βB(E,N)

∂ ln gB
∂N

(E,N) (2.14)

the chemical potential of the reservoir, we thereby obtain

ρ̂A =
1

g
exp

[

ln gB(E − ĤA, N − N̂A)
]

=
gB(E,N)

g
exp

[

−βB(E,N)ĤA + βB(E,N)µB(E,N)N̂A

]

. (2.15)

Simplifying the notation and dropping the subsystem-specific indices yield the
statistical density operator of the grand canonical ensemble

ρ̂ =
1

Y
e−β(Ĥ−µN̂) , (2.16)

where the associated partition function

Y = Tr
[

e−β(Ĥ−µN̂)
]

(2.17)

can be inferred from requiring proper normalization of ρ̂. This density operator
acts within a quantum system whose Hamiltonian and particle number operator
are given by Ĥ and N̂ , respectively. The reservoir to which it is coupled enters
with two characteristic key properties, namely its temperature T = 1/(kBβ) and
its chemical potential µ. Fine tuning of those two parameters can effectively be
used in order to control the energy and particle population within the system.



2.2. THE BOSE-EINSTEIN DISTRIBUTION 25

2.2 The Bose-Einstein distribution

Let us now more specifically consider a gas of bosonic atoms that do not interact
with each other. For this particular case of an ideal Bose gas, the Hamiltonian of
the system is constituted by one-body terms only, describing the kinetic energy
of the atoms as well as their potential energy in the presence of external trapping
configurations. It can be written as

Ĥ =
∞
∑

k=0

Ekâ
†
kâk (2.18)

where â†k and âk are respectively the creation and annihilation operators associ-
ated with the eigenstate φk of the associated single-particle Hamiltonian, and Ek

denotes the corresponding eigenenergy.
Expressing the particle number operator as

N̂ =

∞
∑

k=0

â†kâk (2.19)

in this basis allows us to show that the density operator (2.16) of the grand canon-
ical ensemble can be written as a product of individual density operators that
are associated with the one-body eigenstates φk, as if those eigenstates represent
independent thermodynamic systems that are connected to the same reservoir of
energy and particles. Indeed, we have

e−β(Ĥ−µN̂) = exp

[

−β
∞
∑

k=0

(Ek − µ)â†kâk

]

=
∞
∏

k=0

e−β(Ek−µ)â†
k
âk (2.20)

and hence

〈n0, n1, . . . |e−β(Ĥ−µN̂)|n′
0, n

′
1, . . .〉 =

∞
∏

k=0

δnk,n
′
k
e−nkβ(Ek−µ) (2.21)

for any pair of Fock states |n0, n1, . . .〉 and |n′
0, n

′
1, . . .〉 defined with respect to the

one-body eigenbasis. Consequently, using

∑

n0,n1,...

∞
∏

k=0

e−β(Ek−µ)nk =
∞
∏

k=0

(

∑

nk

e−β(Ek−µ)nk

)

, (2.22)

we can express the partition function of the grand canonical ensemble as

Y = Tr
[

e−β(Ĥ−µN̂)
]

=

∞
∏

k=0

Yk (2.23)
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with

Yk =

∞
∑

nk=0

e−β(Ek−µ)nk =
1

1− e−β(Ek−µ)
, (2.24)

where the latter identity is valid if Ek > µ.
Owing to Eqs. (2.20) and (2.23), the density operator (2.16) of the grand

canonical ensemble can be expressed as the product

ρ̂ =
∞
∏

k=0

1

Yk
e−β(Ek−µ)â†

k
âk . (2.25)

Following Eq. (2.21), it is diagonal in the Fock basis defined with respect to the
single-particle eigenstates, which implies that we have Tr[ρâ†kâk′ ] = 0 for any pair
of quantum numbers k 6= k′. The statistical average of the mean value of an
operator

Â =

∞
∑

k,k′=0

Akk′â
†
kâk′ (2.26)

that corresponds to a single-particle observable is then given by

Tr[ρ̂Â] =
∞
∑

k=0

〈n̂k〉Akk (2.27)

where
〈n̂k〉 = Tr[ρ̂â†kâk] (2.28)

is the average population of the one-body eigenstate φk. Using the identity

â†kâkρ̂ = − 1

βYk

∂

∂Ek
e−β(Ek−µ)â†

k
âk
∏

k′ 6=k

1

Yk′
e−β(Ek′−µ)â†

k′
âk′ (2.29)

we can calculate

〈n̂k〉 =

∞
∑

n0,n1,...=0

〈n0, n1, . . . |â†kâkρ̂|n0, n1, . . .〉

= − 1

βYk

∂

∂Ek

∞
∑

nk=0

e−β(Ek−µ)nk

∏

k′ 6=k





1

Yk′

∞
∑

nk′=0

e−β(Ek′−µ)nk′



 (2.30)

and thus obtain with the definition (2.24) of the partial partition function asso-
ciated with the state φk, provided we have Ek > µ,

〈n̂k〉 = − 1

β

∂

∂Ek
lnYk =

1

eβ(Ek−µ) − 1
, (2.31)

which is the celebrated Bose-Einstein distribution.
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The statistical average of the total number of particles that are found within
the system is then given by

〈N̂〉 =
∞
∑

k=0

〈n̂k〉 =
∞
∑

k=0

1

eβ(Ek−µ) − 1
, (2.32)

while we obtain

〈Ĥ〉 =
∞
∑

k=0

〈n̂k〉Ek =
∞
∑

k=0

Ek

eβ(Ek−µ) − 1
, (2.33)

for the average value of the total energy that is contained within this ideal Bose
gas. These two expressions implicitly rely on the requirement µ < Ek for all k that
the chemical potential of the reservoir must fulfill in order for the grand canonical
ensemble to yield meaningful results. Indeed, if the chemical potential exceeds
one of those eigenenergies, say E0, the expression (2.24) for the corresponding
partition function diverges, and it is straightforward to show that the average
population of the associated single-particle state φ0, which one would now have
to evaluate through the expression

〈n̂k〉 =
∑∞

nk=0 nke
−β(Ek−µ)nk

∑∞
nk=0 e

−β(Ek−µ)nk
, (2.34)

would diverge as well. Physically, this would mean that the system is flooded
by an unlimited number of particles from the reservoir, which would give rise
to an infinite population of the state φ0. Obviously, the hypothesis of dealing
with noninteracting particles, which may be a very good approximation for a
rather dilute gas, will generally break down once the particle density within the
system exceeds a certain threshold, and this will give rise to a modification of the
minimal energy a particle needs to have in order to be ables to enter the system,
usually in such a way that the influx of particles from the reservoir comes to a
halt at some point.

Problems

2.1 Show that in the case of noninteracting fermionic atoms one obtains the
Fermi-Dirac distribution

〈n̂k〉 =
1

eβ(Ek−µ) + 1
(2.35)

for the average population of the single-particle eigenstate φk.

2.2 Calculate the variance of the particle number with respect to its statistical
mean value (2.32). Under which conditions can the grand canonical ensem-
ble be considered to yield identical predictions as the canonical ensemble,
for observables that are a function of the particle number operator only?
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2.3 Bose-Einstein condensation in free space

Let us now particularize for the specific case of a gas of noninteracting bosonic
atoms that can freely move in D spatial dimensions, with D = 1, 2, or 3. For
the case D < 3 we shall consider the presence of a tight transverse harmonic
confinement in the remaining 3 − D dimensions, which is so strong that in the
considered range of temperatures the atoms of the gas occupy the transverse
ground mode only, whose associated ground mode energy is set to zero without
loss of generality. This yields a purely kinetic single-particle Hamiltonian in D
dimensions, written as

H = − ~
2

2m

∂2

∂r2
(2.36)

with r ≡ (r1, . . . , rD) ∈ RD and m the mass of the atoms.

To render the eigenspectrum of this Hamiltonian discrete, we introduce an
artificial normalization volume in terms of a D-dimensional hypercube (i.e., a
cube for D = 3, a square for D = 2, and a line for D = 1) exhibiting the
length L and hence the hypervolume V = LD and featuring periodic boundary
conditions. That is, a valid wavefunction ψ of this system has to fulfill the
conditions ψ|rj+L = ψ|rj for all rj ∈ R and all j = 1, . . . , D. The eigenfunctions
of the Hamiltonian (2.36) satisfying these periodic boundary conditions are then
given by the plane waves

φk(r) =
1√
V
eik·r (2.37)

with k = (2π/L)l where l ≡ (l1, . . . , lD) ∈ ZD is the set of integers that represent
the quantum numbers of this single-particle system. The associated eigenenergies
are given by

Ek =
~2k2

2m
=

(2π~)2l2

2mL2
(2.38)

with l2 = l21 + . . .+ l2D.

Let us first evaluate the mean total population of the system, assuming that
it is connected to a grand canonical particle and heat reservoir maintained at
the temperature T = 1/(kBβ) and the chemical potential µ. According to the
Bose-Einstein distribution (2.31), this mean total population is, in analogy with
Eq. (2.32), given by

〈N̂〉 =
∑

k

1

eβ(Ek−µ) − 1
, (2.39)

where
∑

k ≡
∑

l =
∑∞

l1=−∞ · · ·
∑∞

lD=−∞ is a short-hand notation for the sum-
mation over all integer quantum numbers of the system. As we shall take the
limit L→ ∞ in the end, to describe an infinitely extended system, we can safely
consider that adjacent terms in the sum (2.39) are infinitesimally close to each
other for any set of finite (i.e., nonzero and non-infinite) values for β and µ. This
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allows us to replace the summation
∑

l by an integration
∫

dDl = (2π)−DV
∫

dDk,
yielding

〈N̂〉 = V

(2π)D

∫

dDk
1

eβ(Ek−µ) − 1
. (2.40)

Using the identity

1

eβ(Ek−µ) − 1
=

1

1− e−β(Ek−µ)
− 1 =

∞
∑

l=1

e−lβ(Ek−µ) , (2.41)

which is valid for µ < 0 (since Ek > 0 for all k), we can evaluate Eq. (2.40) in
terms of D Gaussian integrations, yielding

〈N̂〉 = V

(2π)D

∞
∑

l=1

√

2πm

l~2β
elβµ . (2.42)

This latter expression can be rewritten in terms of the so-called Bose function

which in the interval 0 ≤ z < 1 is defined by

gp(z) =

∞
∑

l=1

zl

lp
(2.43)

for the parameter p > 0. Introducing the thermal de Broglie wavelength of the
atomic gas as

λT =
2π~√

2πmkBT
, (2.44)

we obtain

〈N̂〉 = V

λDT
gD/2(e

βµ) (2.45)

for the mean population of the system, and hence

n̄ =
〈N̂〉
V

=
1

λDT
gD/2(e

βµ) (2.46)

for the mean atom density.
Figure 2.1(a) shows the behaviour of the Bose function (2.43) in the interval

of interest 0 ≤ z < 1 for various values of the parameter p. Independently of p
we have the common scaling

gp(z) ≃ z +O(z2) (2.47)

for small positive z ≪ 1. For p ≤ 1 the Bose function diverges in the opposite
limit z → 1 while it converges towards Riemann’s zeta function

ζ(p) =

∞
∑

l=1

1

lp
(2.48)
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Figure 2.1: (a) Bose function (2.43) plotted for p = 0.5, 1, 1.5, 2, and 3. (b–d)
Lines of constant atom density n̄ plotted as a function of the temperature T
and the chemical potential µ for (b) D = 1, (c) D = 2, and (d) D = 3 spatial
dimensions. µ and kBT are both given in units of the characteristic energy scale
ED(n) = ~

2n2/D/m that is defined with respect to a given reference value n
for the atom density. Solid lines show the case n̄ = n within each panel, while
dotted lines show, from left to right in the panels, the choices n̄ = 0.2n, 0.5n,
and 2n. (d) Zoom onto the crossover towards Bose-Einstein condensation. The
solid line shows the result that is from a numerical inversion of Eq. (2.46), while
the dashed line is based on a numerical evaluation of Eq. (2.39) considering the
case of N = 1000 atoms within the normalization volume.
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if p > 1, yielding for the specific case p = 3/2

lim
z→1

g3/2(z) = ζ(3/2) ≃ 2.612375 . (2.49)

This observation indicates the existence of an upper limit for the mean density
that the system can accomodate in three spatial dimensions at a given tempera-
ture, namely the density n̄max = ζ(3/2)λ−3

T that would be obtained from tuning
the chemical potential close to zero.

This latter conclusion is valid in the strict thermodynamic limit, implying a
strictly infinite normalization volume V → ∞ (and hence, with a finite atom den-
sity n̄, also an infinite total population of the system), and relies on the cooling
process being truly conducted in the framework of a grand-canonical ensemble
where the system’s population and energy are controlled by the parameters T and
µ of the heat and particle reservoir. It has to be amended, however, in the experi-
mentally more common (and practically more efficient) situation that the atomic
gas is cooled to ultralow temperatures by means of a pure heat reservoir, while
impeding population exchange with its environment1. Being, in thermal equilib-
rium, identical to the one that is prepared in the heat reservoir, the temperature
that the system thereby attains can become arbitrarily low for a sufficiently so-
phisticated control of the reservoir, ultimately limited only by the absolute zero
of temperature. This would be in contradiction with the existence of a finite
lower limit for the temperature at given total population of the system, as was
obtained in the above considerations concerning a free three-dimensional Bose
gas.

Indeed, relying on the equivalence of predictions made by the different sta-
tistical ensembles in the thermodynamic limit, we can describe such a canonical
cooling process in the framework of the grand canonical ensemble, namely by
considering a suitable variation of the chemical potential with the temperature
which is such that the mean total population of the system remains constant
during the cooling process. Figure 2.1(b–d) shows for D = 1, 2, and 3 how µ has
to be tuned as a function of T in order to keep a constant mean atom density
n̄ in the system. A smooth crossover to the origin in the µ–T diagram is found
for D = 1 and 2, reflecting the fact that in those two cases the TD/2 scaling
of the prefactor in Eq. (2.46) can be perfectly compensated by pushing µ suffi-
ciently close to zero, and hence the argument of the Bose function in Eq. (2.46)
sufficiently close to unity, in order to maintain a constant n̄. This is no longer
possible for D = 3 where there is an upper bound for n̄ at given temperature.

1Technically, evaporative cooling, as discussed in the subsequent chapter, involves the cou-
pling of the atomic gas to a particle reservoir maintained at very low chemical potential
µ → −∞. Note, however, that this coupling process is active only during a transient time
scale that is needed to achieve sufficiently high phase-space densities for Bose-Einstein con-
densation to set in. Thermal equilibrium with that particle reservoir, which would imply the
total depopulation of the atomic gas, is therefore, in practice, never attained in an evaporative
cooling process.
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Consequently, the curve of constant mean density n̄ does, for D = 3, not seem to
smoothly join the origin in the µ–T diagram but appears to terminate somewhere
at the µ = 0 axis, namely at the critical value

Tc =
2π~2

mkB

(

n̄

ζ(3/2)

)2/3

(2.50)

of the temperature corresponding to λTc
= [ζ(3/2)/n̄]1/3.

This apparent paradox is resolved by re-examining the approximation that we
made to evaluate the expression (2.39) for the mean population of the system,
where the summation over single-particle eigenstates was replaced by an integra-
tion over the D-dimensional reciprocal space, yielding Eq. (2.40). That particular
approximation is certainly valid in the thermodynamic limit L→ ∞ for any finite
chemical potential µ since the absolute value of the latter will then clearly exceed
the energy scale ∆E = (2π~)2/(2mL2) that characterizes the spacing between
adjacent levels in the single-particle eigenspectrum of the system. However, if in
the D = 3 dimensional system a population-preserving cooling process is consid-
ered in which the temperature is lowered across Tc, the absolute value of chemical
potential will then, for any large but finite size of the normalization volume, fall
below the scale ∆E at some point. While adjacent terms in the summation in
Eq. (2.39) can still be considered to be relatively close to each other in that case
provided they are characterized by finite integer vectors l 6= 0, the term associ-
ated with the single-particle ground state, corresponding to l = 0, then attains a
diverging value

N0 =
1

e−βµ − 1
≃ − 1

βµ
+O[(βµ)0] (2.51)

which for −µ ≪ E∆ will be very different from the population N1 ≃ (βE∆)
−1

of one of the three first excited single-particle eigenstates. That ground-state
term has therefore to be treated separately in the sum in Eq. (2.39), while for
all other terms we can still justify, at least approximately, the replacement of the
summation by an integration.

The sum over the populations of all excited states is thus still given by the
expression (2.40), noting that for D = 3 the exclusion of a volume element of
the size (2π/L)3 from the integration domain has, for L → ∞, no incidence on
the value of the integral in Eq. (2.40). Using furthermore gD(e

βµ) ≃ ζ(D) for
−βµ≪ 1, we obtain for T < Tc the expression

N = N0 +
V

λ3T
ζ(3/2) (2.52)

for the total population N of the system. In combination with Eq. (2.51), we
thereby obtain a linear scaling µ ≃ −kBT/N0 ≃ −kBT/N of the chemical po-
tential with the temperature in the ultracold regime T ≪ Tc for which we have
N −N0 ≪ N .
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Figure 2.2: (a) Population N0 of the single-particle ground state, normalized with
respect to the total population N , and (b) specific heat, both plotted as a function
of the temperature T . Solid lines show the behaviour of these observables for the
infinite three-dimensional Bose gas, for which they exhibit kinks at the critical
temperature Tc (marked by vertical dotted lines), while dashed lines illustrate
what would be obtained for the case of a finite normalization volume containing
altogether N = 1000 atoms.

Turned around, Eq. (2.52) can be rewritten to yield the population of the
single-particle ground state as a function of the total population and the temper-
ature according to

N0/N = 1− (T/Tc)
3/2 (2.53)

in the thermodynamic limit, where we use the expressions (2.50) for Tc and
(2.44) for λT . This particular behaviour, displayed in Fig. 2.2(a), is indicative of
a second-order phase transition, taking place at the critical temperature Tc. Like
in the case of ferromagnetism, we can identify an order parameter, related here to
the population of the single-particle ground state in this noninteracting bosonic
many-body system, which is vanishingly small above the critical temperature
and acquires macroscopically large values if the system is cooled below Tc. The
second-order nature of this phase transition is manifested by the fact that the
order parameter varies continuously in the entire temperature range, including
the critical temperature Tc where it exhibits a kink.

The singular behaviour of the system at the critical temperature manifests
itself not only in observables that are directly related to the ground-state popula-
tion, but can be revealed also in more general susceptibilities, such as the specific
heat defined through

cV =
1

N

∂

∂T
〈Ĥ〉 , (2.54)

where the derivative of the system’s mean total energy 〈Ĥ〉 with respect to the
temperature is to be carried out at fixed total population N and fixed normal-
ization volume V . The mean total energy of the system is straightforwardly
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obtained via

〈Ĥ〉 =
∑

k

Ek

eβ(Ek−µ) − 1
, (2.55)

in analogy with the corresponding expression (2.39) for the mean population.
Above the critical temperature, for T > Tc, we can justify the replacement of the
summation in Eq. (2.55) by an integration, yielding

〈Ĥ〉 = V

(2π)3

∫

d3k
Ek

eβ(Ek−µ) − 1
(2.56)

in analogy with Eq. (2.40). Using the identity

Ek

eβ(Ek−µ) − 1
= Ek

∞
∑

l=1

e−lβ(Ek−µ) = − ∂

∂β

∞
∑

l=1

1

l
e−lβ(Ek−µ) , (2.57)

Eq. (2.56) can be evaluated by means of Gaussian integrations, yielding

〈Ĥ〉 = 3

2
kBT

V

λ3T
g5/2(e

βµ) . (2.58)

Below the critical temperature, this latter expression is amended as

〈Ĥ〉 = 3

2
kBT

V

λ3T
ζ(5/2) , (2.59)

in analogy with Eq. (2.52), noting that the macroscopically populated single-
particle ground state has vanishing energy.

The specific heat is then straightforwardly evaluated as

cV = kB















15

4

kB
λ3T n̄

ζ(5/2) : T < Tc

15

4

g5/2(e
βµ)

λ3T n̄
− 9

4

λ3T n̄

g1/2(eβµ)
: T > Tc

. (2.60)

As displayed in Fig. 2.2(b), cV displays a power-law increase ∝ T 3/2 up to the
critical temperature Tc and then abruptly turns into a smooth decrease towards
the asymptotic value 3

2
kB for T → ∞. The latter represents the well-known

specific heat for a classical ideal gas of free particles that do not exhibit internal
(i.e., rotational or vibrational) degrees of freedom. This confirms again that
specific quantum features of this atomic gas become obsolete far above the critical
temperature, respectively.

Problems

2.3 (a) Show that for p = 1/2 the Bose function diverges as

g1/2(z) ≃
√

π

1− z
(2.61)

for 0 < z < 1 with 1− z ≪ 1.
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(b) Show that in one spatial dimension, D = 1, the chemical potential has
to be tuned as

µ ≃ −m(kBT )
2

2~2n̄2
(2.62)

as a function of the temperature T in order to maintain a fixed atom
density n̄ in the limit T → 0.

2.4 (a) Show that for p = 1 the Bose function is given by

g1(z) = − ln(1− z) (2.63)

(b) Show that in two spatial dimensions, D = 2, the chemical potential
has to be tuned as

µ = kBT ln

[

1− exp

(

−2π~2n̄

mkBT

)]

(2.64)

as a function of the temperature T in order to maintain a fixed atom
density n̄.

2.5 Show that the first derivative g′p of the Bose function gp satisfies the equation

g′p(z) =
gp−1(z)

z
(2.65)

for all p ∈ R and all 0 < z < 1.

2.6 Defining p = 3/2 and the energy scale E0 = 2π2~2/(mV 2/3), the total
population and the mean total energy of the system can be written as

N =







N0 +
(

kBT
E0

)p

ζ(p) : T < Tc
(

kBT
E0

)p

gp(e
βµ) : T > Tc

(2.66)

and

E = pkBT

(

kBT

E0

)p{
ζ(p+ 1) : T < Tc
gp+1(e

βµ) : T > Tc
, (2.67)

respectively, with the critical temperature

kBTc = [N/ζ(p)]1/pE0 . (2.68)

(a) Show that the specific heat is given by

cV = pkB















(p+ 1)
ζ(p+ 1)

ζ(p)

(

T

Tc

)p

: T < Tc

(p+ 1)
gp+1(e

βµ)

gp(eβµ)
− p

gp(e
βµ)

gp−1(eβµ)
: T > Tc

(2.69)

as a function of the temperature.
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(b) Show that cV is continous at the critical temperature for p ≤ 2 and
discontinuous otherwise.

(c) Show that cV falls off as

cV ≃ pkB

[

1 +
p− 1

2p+1
N

(

E0

kBT

)p

+O
(

[NEp
0/(kBT )

p]2
)

]

(2.70)

for T → ∞.

2.4 Bose-Einstein condensation in a harmonic

trap

Let us now consider a more realistic modeling of the single-particle Hamiltonian
describing a quantum gas, which requires some magnetic or optical trapping con-
figuration in order to isolate the atoms of the gas from the surroundings. We
therefore assume the presence of a harmonic confinement in D dimensions, cen-
tered about the origin and characterized by the oscillation frequencies ω1, . . . , ωD.
As in Section 2.3, the presence of a very tight confinement is considered in the
remaining 3−D dimensions, such that the atoms of the gas occupy only a single
one-particle mode in those transverse dimensions, namely the transverse ground
mode whose associated energy is set to zero. The single-particle Hamiltonian of
this system is then given by the expression

H = − ~2

2m

∂2

∂r2
+ V (r) (2.71)

with the potential energy

V (r) =
m

2

D
∑

j=1

ω2
j r

2
j . (2.72)

The eigenenergies of this one-body Hamiltonian (2.71) are straightforwardly eval-
uated as

En =

D
∑

j=1

(nj + 1/2) ~ωj (2.73)

with n ≡ (n1, . . . , nD) and nj ∈ {0, 1, 2, . . .} for all j = 1, . . . , D. According to
Eq. (2.32), we then obtain the mean total population of the system as

〈N̂〉 =
∞
∑

n1,...,nD=0

1

eβ(En−µ) − 1
(2.74)

in the presence of a heat and particle reservoir that is maintained at the temper-
ature T = 1/(kBβ) and the chemical potential µ < E0.
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In contrast to the case of free motion, we do not dispose here of an artificial
regularization parameter, such as the size of the normalization volume introduced
in Section 2.3, that would have to be set to infinity in the end and thereby allow us
to transform the summations in Eq. (2.74) into integrals. To nevertheless justify
this latter replacement, which is a necessary step in order to analytically calculate
the mean population of the system, we have to assume that we are concerned
with a specific hierarchy of energy scales implying the inequality β~ωj ≪ 1 for all
j = 1, . . . , D. In other words, the temperature to which we intend to cool down
the system is ultralow (of the order of fractions of a microkelvin in practice)
but not so low that its associated energy kBT becomes comparable to the energy
scales ~ωj characterizing the eigenstates of the trapping potential2. We anticipate
here that those energy scales are actually considered to vanish, ~ωj → 0, in the
thermodynamic limit that we have to define in order to obtain a proper phase
transition as in Section 2.3, in combination with a diverging population N → ∞
of the system.

If this particular condition β~ωj ≪ 1 is satisfied for all j = 1, . . . , D, we are
entitled to approximate

〈N̂〉 ≃
∫ ∞

0

dn1 · · ·
∫ ∞

0

dnD
1

eβ(En−µ) − 1
. (2.75)

Using again Eq. (2.41) (now with En instead of Ek), the above integrations are
straightforwardly calculated via

∫∞
0
e−αjnjdnj = α−1

j for αj > 0. We then obtain

〈N̂〉 ≃
(

kBT

~ω̄

)D

gD(e
βµ̃) , (2.76)

where gD is again the Bose function (2.43),

ω̄ = (ω1 · · ·ωD)
1/D (2.77)

is the geometric mean of the oscillation frequencies in the trapping potential, and

µ̃ = µ−
D
∑

j=1

1

2
~ωj (2.78)

corresponds to an effective redefinition of the chemical potential, done in such a
way that we have the same constraint µ̃ < 0 as in the case of free motion.

Since for D > 1 the Bose function gD(z) approaches a finite value ζ(D) in
the limit z → 1−, namely ζ(2) = π2/6 ≃ 1.645 for D = 2 and ζ(3) ≃ 1.202 for

2More precisely, if we also assume the presence of a harmonic confinement in the 3 − D
remaining dimensions, with the associated oscillation frequencies ωD+1, . . . , ω3, then we have
the hierarchy of energy scales ~ωj ≪ kBT ≪ ~ωk for all 1 ≤ j ≤ D and all D < k ≤ 3.
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D = 3, we can infer that Bose-Einstein condensation occurs in two- and three-
dimensional harmonic trapping potentials. The associated critical temperature
is evaluated from Eq. (2.76) as

Tc =
~ω̄

kB

(

N

ζ(D)

)1/D

(2.79)

for a given total population of N atoms in the trap. As in the case of free motion,
the single-particle ground state of this system is macroscopically populated for
T < Tc. Calculating the summation in Eq. (2.74) more carefully in the limit
µ̃ → 0−, such that the ground-state contribution to that sum is singled out, we
obtain, in perfect analogy with Eq. (2.52),

N = N0 +

(

kBT

~ω̄

)D

ζ(D) (2.80)

with N0 = −kBT/µ̃ the ground-state population. This yields with Eq. (2.79)

N0/N = 1− (T/Tc)
D , (2.81)

i.e., we obtain again a behaviour that is characteristic for a second-order phase
transition.

As in the case of a free Bose gas, the singular behaviour of the system at this
phase transition can be probed via the specific heat, defined by Eq. (2.54), where
the derivative of the mean total energy with respect to temperature is here to
be taken at fixed trap frequency parameters. The expression for the mean total
energy,

〈Ĥ〉 =
∞
∑

n1,...,nD=0

En

eβ(En−µ) − 1
, (2.82)

can be evaluated in a perfectly analogous manner as in Section 2.3, using again
the identity (2.57). We obtain

〈Ĥ〉 = N

2

D
∑

j=1

~ωj +DkBT

(

kBT

~ω̄

)2{
ζ(D + 1) : T < Tc
gD+1(e

βµ̃) : T > Tc
(2.83)

below and above the critical temperature. The specific heat at constant trap
frequency parameters is then yielded as

cV = DkB















(D + 1)
ζ(D + 1)

ζ(D)

(

T

Tc

)D

: T < Tc

(D + 1)
gD+1(e

βµ̃)

gD(eβµ̃)
−D

gD(e
βµ̃)

gD−1(eβµ̃)
: T > Tc

. (2.84)

It increases as ∝ TD below the critical temperature and approaches, for high
temperatures T ≫ Tc, the asymptotic value DkB that characterizes a classical
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Figure 2.3: Temperature dependence of (a,c) the relative ground state population
(normalized with respect to the total population N) and (b,d) the specific heat
of a Bose gas in a harmonic trap defined in (a,b) D = 2 and (c,d) D = 3
spatial dimensions. Dashed lines show these observables for the specific case
of N = 1000 atoms in the trap, while solid lines show the behaviour of these
observables in a thermodynamic limit N → ∞ which is defined such that the
mean trap frequency scales as ω̄ ∼ N−1/D. The critical temperature Tc that
emerges in this limit is marked by vertical dotted lines. While for D = 2 the
specific heat is continuous at Tc (even though it exhibits a diverging slope right
above that temperature), it undergoes a discontinuous jump in D = 3 spatial
dimensions when the temperature is varied across Tc.

ideal gas in aD-dimensional harmonic trap, as shown in Fig. (2.84). Since gD−2(z)
diverges in the limit z → 1− for D ≤ 2 but attains a finite value in that limit
for D > 2, the expression (2.84) for the specific heat is continuous at the critical
temperature for D = 2, as in the case of free motion, whereas it undergoes a
discontinuous drop at T = Tc for D = 3.

Strictly speaking, the singular nature of this phase transition is never really
manifested in experimentally realistic trapping potentials since the latter are
most generally characterized by finite oscillation frequencies ωj and can thus
only host a finite number of atoms N when being put in contact with a grand-
canonical reservoir maintained at finite chemical potential and finite temperature.
Indeed, a phase transition can, from an academic point of view, only occur in
the framework of a proper thermodynamic limit implying an infinite population
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N → ∞ of the system. In the case of free motion in three dimensions, this
thermodynamic limit is most naturally obtained through the requirement of a
diverging normalization volume, V → ∞, thus yielding, for finite values of µ
and T , a finite mean density n̄ = N/V and hence, through Eq. (2.50), also a
finite value for the critical temperature Tc. To get this latter property of a finite
Tc also for the case of a trapped gas, we infer from Eq. (2.79) that the trap
frequencies ωj have to vanish in the thermodynamic limit, namely in such a way
that we have the scaling ω̄ ∼ N−1/D for N → ∞. For a harmonically trapped
Bose-Einstein condensate at zero temperature, this would imply that both the
atom density at the trap center and the occupied spatial volume in D dimensions
diverge identically, namely as ∝ N1/2, in this particular thermodynamic limit.

The absence of an intrinsically defined pathway to reach the thermodynamic
limit for trapped gases opens a possibility to justify the occurrence of Bose-
Einstein condensation even in one-dimensional harmonic confinement potentials,
despite the fact that for D = 1 the Bose function in Eq. (2.76) diverges for
µ̃→ 0−. To show this, let us reconsider the calculation of the mean population in
this particular limit. For D = 1 and µ̃→ 0−, the summation over the population
of excited states according to Eq. (2.74) can be performed without the need to
approximate it by an integral, namely through the asymptotic identity

∞
∑

n=1

1

enx − 1
≃ − ln x

x
+O(x−1) (2.85)

for 0 < x≪ 1. Substituting x with β~ω, we obtain from Eq. (2.74)

〈N̂〉 ≃ kBT

−µ̃ +
kBT

~ω
ln

(

kBT

~ω

)

(2.86)

in the limit µ̃ → 0−. Identifying, as usual, the ground-state population with
N0 = −kBT/µ̃, we infer the expression for the macroscopic condensate fraction,
valid below a certain critical temperature Tc, as

N0/N = 1− kBT

N~ω
ln

(

kBT

~ω

)

. (2.87)

Clearly, if we defined the thermodynamic limit in the analogous manner as for
multidimensional traps, namely through the scaling ω ∼ N−1, the right-hand side
of Eq. (2.87) would logarithmically diverge to the extent that Tc = 0 would be
the only meaningful value for that critical temperature, thus excluding the occur-
rence of Bose-Einstein condensation. However, nothing prevents us from slightly
amending the definition of the thermodynamic limit for this particular case of
a one-dimensional trap, namely such that we have the scaling ω ∼ N−1 lnN
for large N . Defining the trap frequency scale ω0 = Nω/ lnN , which is thus
supposed to remain constant in the limit N → ∞, we rewrite Eq. (2.87) as

N0/N = 1− kBT

~ω0

(

1− ln(β~ω0 lnN)

lnN

)

N→∞≃ 1− kBT

~ω0

(2.88)
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and thereby obtain a linear decrease of the condensate fraction with increasing
T , up to the finite critical temperature

Tc =
~ω0

kB
=

N~ω

kB lnN
. (2.89)

Bose-Einstein condensation can thus be achieved also in one-dimensional har-
monic traps.

Problems

2.7 Show the validity of the series expansion

∞
∑

n=1

1

enx − 1
=

− ln x+ γ

x
+

1

4
+O(x) (2.90)

for 0 < x≪ 1, where

γ = lim
N→∞

(

N
∑

n=1

1

n
− lnN

)

≃ 0.5772156649 (2.91)

is the Euler-Mascheroni constant.

2.5 The condensate wavefunction

As in the case of a free Bose gas, the order parameter that characterizes Bose-
Einstein condensation in a harmonic trap has to be related with the population
of the single-particle ground mode of the trapping potential, whose temperature
dependence, given by Eq. (2.81), features the typical characteristics of a second-
order phase transition. In the case of a homogeneous Bose gas, this condensate
population is readily evaluated owing to the fact that the single-particle ground
mode is given by the stationary, zero-momentum component of the gas. In the
presence of inhomogeneous confinement potentials, however, that ground mode
would have to be determined ex ante, through an exquisite characterization of the
trapping configuration at hand, in order to access its population in an experiment.
In view of this technical complication, the concept of the order parameter may
therefore appear difficult to use from a practical point of view.

Penrose and Onsager3 found a way how to circumvent this problem. They
proposed a definition of the order parameter that is more robust with respect to
such experimental limitations and also encompasses the local character of order as

3O. Penrose and L. Onsager, Bose-Einstein Condensation and Liquid Helium, Phys. Rev.
104, 576 (1956).
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well as the aspect of spontaneous symmetry breaking which is common to second-
order phase transitions. Consider, for this purpose, an arbitrary basis (φk)k∈N0 of
the one-body Hilbert space, which may or may not be close to the eigenbasis of
the system’s single-particle Hamiltonian. Denoting the associated creation and
annihilation operators by â†k and âk, we can form the so-called reduced one-body

density matrix (nkk′)k,k′∈N0 defined via

nkk′ = 〈â†kâk′〉 = Tr[ρ̂â†kâk′] . (2.92)

This matrix is hermitian and positive, i.e., we have nkk′ = nk′k for all k, k′ ∈ N0

as well as nkk ≥ 0 for all k ∈ N0. Furthermore, its trace is evaluated as

Tr(nkk′) =

∞
∑

k=0

nkk =

〈 ∞
∑

k=0

â†kâk

〉

= N (2.93)

where N is the total number of particles populating the system. The eigenvalues
of (nkk′) are thus nonnegative and sum up to the total particle number N .

Following Penrose and Onsager, a Bose-Einstein condensate is realized if that
reduced one-body density matrix exhibits one eigenvalue N0 that is macroscopi-
cally large, i.e., of the order of the total particle number. Denoting the associated
normalized eigenvector by (vk)k∈N0, which thus satisfies

∑∞
k=0 |vk|2 = 1 and solves

the eigenvalue equations
∞
∑

k′=0

nkk′vk′ = N0vk (2.94)

for all k, the order parameter associated with the Bose-Einstein condensation is
given by the condensate wavefunction defined through

ψ0(r) =
√

N0

∞
∑

k=0

vkφk(r) . (2.95)

In the absence of interaction, we are, of course, entitled to represent the
reduced one-body density matrix in the eigenbasis of the single-particle Hamil-
tonian, which is thus written as

Ĥ =

∞
∑

k=0

Ekâ
†
kâk . (2.96)

The reduced one-body density matrix is then diagonal, nkk′ = δkk′Nk, and its
eigenvalues Nk are identical to the average populations of the system’s single
particle eigenstates, given the Bose-Einstein distribution (2.31). Denoting by φ0

the ground state of the system, such that we have E0 < Ek for all k > 0, we
obtain the condensate wavefunction as

ψ0(r) =
√

N0φ0(r) . (2.97)
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Its square modulus |ψ0(r)|2 thus yields the spatial density of condensed atoms.
Order, below the critical temperature, is thus a local concept, being highest

in the trap center and decreasing towards the edges of the atomic cloud. Fur-
thermore, this concept involves an element of spontaneous symmetry breaking,
namely concerning the U(1) gauge symmetry, due to the fact that the eigenvec-
tors of the reduced one-body density matrix, as well as the eigenfunctions of the
single-particle Hamiltonian, are defined up to arbitrary phase factors eiϕ. Let
us also stress that no knowledge about the system’s Hamiltonian is required to
define and evaluate the order parameter according to Penrose and Onsager. We
even do not need to exclude the presence of atom-atom interaction since, as a
matter of fact, the elements (2.92) of the reduced one-body density matrix can
be evaluated also for interacting systems. The above concept of the order pa-
rameter is thus applicable to interacting systems as well. Incidentally, it allows
one to formally define the notion of a Bose-Einstein condensate in the presence
of interaction, namely via the condensate wavefunction (2.95).

It is instructive to evaluate the reduced one-body density matrix in position
representation. Using the field operator ψ̂(r) =

∑∞
k=0 φk(r)âk, we obtain

n(r, r′) =
〈

ψ̂†(r)ψ̂(r′)
〉

=

∞
∑

k,k′=0

nkk′φ
∗
k(r)φk′(r

′) , (2.98)

which shows that this particular observable can also be seen as a measure for
long-range coherence within the atomic cloud. In the absence of interaction, we
can choose (φk)k∈N0 to be the eigenbasis of the single-particle Hamiltonian, thus
yielding nkk′ = δkk′Nk with Nk given by the Bose-Einstein distribution (2.31).
Equation (2.98) then simplifies to

n(r, r′) =
∞
∑

k=0

φ∗
k(r)φk(r

′)

eβ(Ek−µ) − 1
. (2.99)

Let us now specifically evaluate these spatial one-body density matrix ele-
ments for the case of a homogeneous noninteracting Bose gas in three dimensions.
As was discussed in Section 2.3, the single-particle eigenfunctions of this system
are given by the plane waves φk(r) = V −1/2eik·r whose wave vectors k are such
that φk fulfills the periodic boundary conditions imposed by the presence of the
normalization volume V . We thus have φ∗

k(r)φk(r
′) ∝ eik·(r

′−r) and can infer
that n(r, r′) depends only on the distance between the two points r and r′, i.e.,
n(r, r′) ≡ n(r−r′). Following the calculation steps undertaken in Section 2.3, we
replace the sum over those quantized wave vectors by an integral in reciprocal
space, singling out the contribution of the k = 0 component for T < Tc. This
then yields the spatial one-body density matrix as a Fourier transform

n(r− r′) =
1

V

∫

d3p ñ(p)eip·(r−r′)/~ (2.100)
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Figure 2.4: Off-diagonal long-range order for a three-dimensional homogeneous
Bose gas. Plotted are (from above to below) the spatial one-body density matrix
elements n(r − r′) (given in units of the total atom density n̄) as a function
of |r − r′| (given in units of the thermal de Broglie wavelength λTc

at critical
temperature Tc) for T = 0.5Tc (blue curve), T = 0.8Tc (green curve), T = Tc
(orange curve), and T = 2Tc (red curve). While above the critical temperature
the spatial long-range coherence n(r, r′) decreases to zero for |r − r′| → ∞, it
attains a finite value n0 = N0/V (marked by horizontal dashed lines) for T < Tc,
which corresponds to the condensate population N0.

of the particle density in momentum space n(p), the latter being evaluated as

ñ(p) =











V

(2π~)3
1

eβ[p2/(2m)−µ] − 1
: T > Tc

V

(2π~)3
1

eβp2/(2m) − 1
+N0δ(p) : T < Tc

. (2.101)

Figure 2.4 shows the behaviour of the spatial one-body density matrix ele-
ments n(r − r′), as evaluated via Eqs. (2.100) and (2.101), as a function of the
distance |r−r′| below, at, and above the critical temperature Tc. While for T > Tc
this particular measure for spatial coherence rapidly decreases to zero at large
distances, a finite asymptotic value is attained below the critical temperature. It
is obvious from Eqs. (2.100) and (2.101) that this asymptotic value arises from
the contribution of the Bose-Einstein condensate, i.e., we have

lim
|ρ|→∞

n(ρ) = N0/V (2.102)

with N0 the macroscopic population of the single-particle ground state. The
presence of such a condensate thus gives rise to a nonvanishing off-diagonal long-

range order across the atomic cloud, which in homogeneous systems can serve
as an alternative measure for the order parameter that is associated with Bose-
Einstein condensation.
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Problems

2.8 Show that the spatial one-body density matrix element, as evaluated through
Eqs. (2.100) and (2.101), asymptotically decays as

n(ρ) ≃











N0/V +
1

λ2Tρ
: T ≤ Tc

1

λ2Tρ
exp

(

−2
√

−πβµρ/λT
)

: T > Tc
(2.103)

for large ρ/λT → ∞, with λT the thermal de Broglie wavelength (2.44) and
βµ the solution of the equation g3/2(e

βµ) = λ3TN/V .
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Chapter 3

Ultracold atoms

3.1 The hyperfine spectrum of alkali atoms

Alkali atoms, which constitute the leftmost column of the periodic table, are
ideally suited candidates for the realization of Bose-Einstein condensates using
ultracold quantum gases. As they are characterized by a set of entirely closed
shells together with an extra unpaired electron that occupies an otherwise empty
s shell, they feature a finite magnetic momentum which is associated with the
spin of this unpaired electron. This allows one to confine them within magnetic
traps. Noble gases such as helium, which would be much more obvious a choice in
view of creating a Bose-Einstein condensate with an ideal gas, are rather unsuited
from this point of view, since they do not exhibit unpaired electrons giving rise
to a finite magnetic momentum in their ground state.

Another asset of alkali atoms, in particular in contrast to hydogen, is that
the energetic level difference between the electronic ground state and the first
excited state to which a dipole transition from the ground state is allowed lies
in the optical regime and can therefore be accessed with standard lasers. This
allows one to confine alkali atoms in optical dipole traps and to cool them using
laser cooling techniques. In the case of hydrogen, which owing to its theoretical
simplicity would also be a much more obvious choice for an atomic species to be
used for realizing a Bose-Einstein condensate, this energy difference is approxi-
mately 10.2 eV. It would correspond to a wavelength of about 120 nm that a laser
should have in order to induce a resonant transition between the ground state
of hydrogen and its first excited p state. While it is not strictly impossible to
generate coherent electromagnetic radiation in this ultraviolet regime, it requires
much more technical effort than for laser light in the visible or infrared regime.

Last but not least, alkali atoms weakly interact with each other, mainly ow-
ing, again, to the presence of the unpaired electron. While the presence of a finite
atom-atom interaction should, at first glance, have to be considered as a nuisance
in view of experimentally reproducing the process of Bose-Einstein condensation

47
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that we discussed in the previous chapter, it is nowadays seen as an important
resource that opens the door towards the general exploration of interaction ef-
fects within complex many-body systems in a highly controlled manner, to the
extent that ultracold quantum gases represent suitable candidates for engineering
quantum simulators of complex many-body physics. Moreover, the presence of
interaction between the atoms of the gas allows one to reduce the temperature
of the latter via evaporative cooling techniques, as we shall briefly discuss in the
subsequent section.

The most frequently used atomic species for creating Bose-Einstein conden-
sates is Rubidium 87, i.e., 87Rb, as it is commonly abbreviated. Indeed, the first
successful experimental realization of a Bose-Einstein condensate with ultracold
quantum gases was done with 87Rb atoms, namely in 1995 at the Joint Institute

for Laboratory Astrophysics (JILA) of the University of Colorado in Boulder1.
Other pioneering experiments on Bose-Einstein condensation carried out in the
same year at the Massachusetts Institute of Technology (MIT)2 and the Rice Uni-
versity in Houston3 respectively used sodium 23 atoms, abbreviated as 23Na, as
well as lithium 7 atoms, abbreviated as 7Li. Clearly, the choice of the isotope has
to be such that the atomic species under consideration is bosonic and features
an even number of fermionic elementary particles. This implies for alkali atoms,
which have an odd number of electrons, that the number of their nucleons is also
odd.

By now, Bose-Einstein condensates have been realized also with potassium
and cesium atoms as well with atomic species that are not belonging to the alkali
column of the periodic table, such as calcium, strontium, chromium, dysprosium,
erbium, ytterbium, as well as the technically more challenging atomic species
hydrogen and helium (the latter in the long-lived mestastable triplet state corre-
sponding to orthohelium, which allows one to magnetically trap the atoms and
to apply evaporative cooling). A key interest in performing experiments on Bose-
Einstein condensates with atomic species belonging to the “bulk” of the periodic
table resides in the possibility to explore strong interaction effets in such conden-
sates. This is particularly the case for atoms belonging to the group of transition
metals which feature a long-range dipolar interaction. Evidently, the presence of
a strong atom-atom interaction can give rise to significant complications in the
conception of the experimental protocol to be used in order to trap the gas and
cool it below the condensation temperature. It would be rather hard, if not im-

1M. H. Anderson, J. R. Ensher, M. R. Matthews, C. E. Wieman, and E. A. Cornell, Obser-

vation of Bose–Einstein Condensation in a Dilute Atomic Vapor, Science 269, 198 (1995).
2K. B. Davis, M.-O. Mewes, M. R. Andrews, N. J. van Druten, D. S. Durfee, D. M. Kurn,

and W. Ketterle, Bose–Einstein condensation in a gas of sodium atoms, Phys. Rev. Lett. 75,
3969 (1995).

3C. C. Bradley, C. A. Sackett, J. J. Tollett, and R. G. Hulet, Evidence of Bose-Einstein

Condensation in an Atomic Gas with Attractive Interactions, Phys. Rev. Lett. 75, 1687
(1995).
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Figure 3.1: Level scheme of the ground state 5s and some of the lowest excited
states of 87Rb, plotted as a function of their energies (vertical axis). The label
denotes the atomic shell in which the unpaired valence electron is located. The
dash-dotted line indicates the location of the single ionization threshold of 87Rb.
The energetic distance ∆E between the ground state 5s and the first excited
state 5p corresponds to the infrared wavelength λ = hc/∆E ≃ 780 nm. Note
that every p and d state features a fine structure splitting into sublevels due to
the spin-orbit coupling of the valence electron. On a much smaller scale, the
ground level exhibits a hyperfine splitting due to the interaction of the magnetic
moments of the electron spin and the nuclear spin. This hyperfine splitting gives
rise to two sublevels characterized by the total spin quantum numbers F = 1
and F = 2, the energetic distance δE between which (not drawn to scale here)
corresponds to the transition frequency ν = δE/h ≃ 6.8GHz.

possible, to do that e.g. for carbon atoms which are so reactive that they rather
quickly form molecular aggregates.

Figure 3.1 shows a scheme of the energy levels of the electronic ground state
and some of the lowest excited states of 87Rb. All those levels correspond to
electronic configurations with closed 1s22s22p63s23p63d104s24p6 shells and one
unpaired valence electron in an additional shell (indicated by the label in Fig. 3.1).
Contrary to hydrogen, the degeneracy between the 5s, 5p, and 5d levels is lifted
on a rather large energy scale. This phenomenon, dubbed quantum defect, is
a consequence of the fact that states with high angular momentum quantum
numbers, such as 5f or 5g, correspond to valence electron wavefunctions that
have very little amplitude inside the core region that is occupied by the closed
shells of the atom. In those states, the valence electron is therefore effectively
exposed to the attractive Coulomb potential resulting from a uniformly charged
sphere with the charge e, which means that their energies are nearly identical
to their counterparts in hydrogen. Low angular momentum states such as 5s or
5p, on the other hand, do feature a finite probability of presence of the valence
electron inside the core region, which implies that the effective charge of the
core as it is effectively experienced by the valence electron is significantly larger
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than for hydrogen. Consequently, the associated energy levels are significantly
lower than their counterparts in hydrogen, and this reduction of energy is mostly
pronounced for the s states which have the highest probability of presence of
the valence electron inside the core region. Owing to this quantum defect, the
dipole allowed transitions between the ground state ns and the first excited state
np of alkali atoms lie in the optical or near-infrared regime in which lasers are
commonly available.

All states with nonvanishing angular momentum quantum number feature a
splitting into two sublevels, due to the spin-orbit coupling of the valence electron.
While s states are not concerned by this fine structure effect, they also exhibit
splitting into two sublevels, albeit on a much smaller energy scale. This hyperfine
splitting arises from the interaction of the magnetic moments associated with the
electron spin and the nuclear spin.

A simple model for this hyperfine structure of states with vanishing angular
momentum quantum number is provided by the effective Hamiltonian

HHF = A~I · ~S (3.1)

defined in terms of an energy constant A, where ~S denotes the spin of the electron
and ~I the one of the nucleus. This hyperfine Hamiltonian (3.1) can be diagonal-

ized through the introduction of the total spin ~F = ~I + ~S in terms of which we
can rewrite the expression (3.1) as

HHF =
A

2

(

~F 2 − ~I2 − ~S2
)

. (3.2)

The eigenbasis ofHHF is then given in terms of the common eigenstates |I, F,mF 〉
of ~I2, ~S2, and ~F 2, which can be parametrized in terms of the nuclear spin quantum
number I, the total spin quantum number F , as well as the magnetic quantum
number mF associated with the total spin, which corresponds to its z component.
Knowing that the nuclear spin quantum number for 87Rb is I = 3/2 and that we
have S = 1/2 for the electron spin, we obtain, through the rules of the addition of
angular momenta, the two possibilities F = 1 or F = 2 for the quantum number
associated with the total spin F . This gives rise to the two eigenenergies

EF =
A

2
[F (F + 1)− I(I + 1)− S(S + 1)] =

A

2
[F (F + 1)− 9/2]

=

{

−5A/4 : F = 1
3A/4 : F = 2

(3.3)

associated with the eigenstates |I, F,mF 〉 of the Hamiltonian (3.1).
The prefactor A characterising the energy scale of the hyperfine interaction

in the expressions (3.1–3.3) is given by

A =
2

3
µ0geµBgNµNρ0 . (3.4)
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Here, µ0 = 4π × 10−7Vs/Am is the vacuum permeability,

µB =
e~

2me

, (3.5)

µN =
e~

2mp
(3.6)

are Bohr’s magneton and the nuclear magneton, respectively, defined in terms of
the masses me and mp of the electron and the proton, ge ≃ 2 and gN denote the
electronic and nuclear Landé factor, respectively, and ρ0 represents the electronic
density of the 5s orbital, hosting the unpaired electron, at the position of the
nucleus. The expression (3.4) can be calculated via the evaluation of the magnetic
field

~B0 = −2

3
µ0geµBρ0~S (3.7)

that is created by the unpaired electron in the 5s shell at the position of the
nucleus. We then obtain the Hamiltonian (3.1) through the energy HHF = −~µ· ~B0

of the nuclear magnetic moment ~µ = gNµN
~I in the presence of this magnetic

field (3.7). The maximal value of this magnetic moment is specifically obtained
as µ = IgNµN ≃ 2.751µN for 87Rb. This altogether yields a hyperfine splitting

EF=2 − EF=1 = 2A = hνHF (3.8)

that corresponds to the microwave frequency νHF ≃ 6.8GHz in the case of 87Rb.

Problems

3.1 Show that the magnetic field created by an electron that is contained within
a spatially isotropic s orbital is, in leading nonrelativistic order, evaluated
as

~B(0) = −2

3
µ0µB|ψ(0)|2~es

at the position of the nucleus, where ψ(r) denotes the s orbital as a func-
tion of the distance r from the nucleus and ~es is the unit vector along the
orientation of the electron spin.

3.2 Magnetic traps

In the presence of an external magnetic field ~B, the hyperfine Hamiltonian (3.1)
is modified according to

H = A~I · ~S + geµB
~B · ~S − gNµN

~B · ~I , (3.9)

such that it also accounts for the energies of the electronic and nuclear magnetic
moments within this external field. Since according to Eqs. (3.5) and (3.6) we
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Figure 3.2: Hyperfine levels of 87Rb as a function of the magnetic field B, plotted
in units of the energy scale A given by Eq. (3.4).

have µN/µB = me/mp ≃ 5.44×10−4 ≪ 1, the last term on the right-hand side of
Eq. (3.9) can safely be neglected as compared to the second last term. Assuming
that the magnetic field is oriented along the z axis of the coordinate system, i.e.,
~B = | ~B|~ez, we can therefore simplify the internal Hamiltonian of the atom as

H = A~I · ~S + CSz (3.10)

with C = geµB| ~B|.
Figure 3.2 shows the 4I + 2 eigenvalues of this simplified Hamiltonian (3.10)

as a function of the magnetic field strength B = | ~B| for the special case of 87Rb
featuring I = 3/2. They are generally calculated as

E±
I =

AI ± C

2
(3.11)

as well as

E±
mI

= −A
4
± 1

2

√

A2(I + 1/2)2 + C2 + AC(2mI + 1) (3.12)

for all mI ∈ {−I,−I + 1, . . . , I − 1}. In the limit of a weak magnetic field, such
that we have C ≪ A, Eq. (3.12) is approximately evaluated as

E±
mI

≃ −A
4
± (2I + 1)A

4
± 2mI + 1

2(2I + 1)
C (3.13)

in linear order in C/A. This is the Zeeman effect which describes the splitting of
the F = 1 and F = 2 hyperfine states into 2F +1 sublevels due to the presence of
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Figure 3.3: An atom that is moving along a straight line across a spatial region
in which the external magnetic field (indicated by the blue field lines) is inho-
mogeneous will keep the (antiparallel, in this case) orientation of its magnetic
moment with respect to the local direction of the magnetic field throughout this
motion, provided the latter is sufficiently slow such that the adiabaticity condi-
tion, relating the effective speed of change of the magnetic field at the position
of the atom with the Zeeman splitting of its hyperfine sublevels, remains valid
along the entire trajectory of the atom.

the magnetic field. This Zeeman splitting can be perturbatively evaluated within
the eigenstates |I, F,mF 〉 of the hyperfine Hamiltonian (3.1) that we introduced
in the previous section. We obtain for the case of 87Rb with I = 3/2

EF=2,mF
≃ 3

4
A+

1

4
mFC , (3.14)

EF=1,mF
≃ −5

4
A− 1

4
mFC . (3.15)

In the opposite limit of a very strong magnetic field, with C ≫ A, we approxi-
mately evaluate Eq. (3.12) as

E±
mI

≃ ±C
2
± A

4
(2mI + 1∓ 1) . (3.16)

This is the Paschen-Back effect. It expresses the fact that in a strong magnetic
field the hyperfine part (3.1) of the Hamiltonian (3.10) represents a small pertur-
bation as compared to the CSz term corresponding to the energy of the electronic
magnetic moment within the external magnetic field.

While an external magnetic field that is generated by a set of coils and/or
current-carrying wires in a laboratory cannot be considered to be strictly homo-
geneous, it typically varies on length scales that are much larger than the Bohr
radius which is the characteristic length scale for the atom. Approximating it by
a homogeneous field is therefore very well justified as long as the atom is at rest.
If the atom is moving in space, it will, as is illustrated in Fig. 3.3, still experience
a magnetic field that is approximately homogeneous, but the orientation of this
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field and its absolute strength at the instantaneous position of the atom will ef-
fectively vary with time. As long as this variation is slow as compared to the time
scale that is given by the inverse of the Zeeman splitting C/4 between adjacent
hyperfine sublevels (or, in the case of a very strong magnetic field, by the inverse
of the Paschen-Back splitting A/2), the adiabatic theorem of quantum mechanics
ensures that the hyperfine spin state of the atom is unchanged in the course of
its motion. That is, if the atom is initially prepared within an eigenstate of the
Hamiltonian (3.10), it will remain in that eigenstate during its motion. What
will vary, however, is the notion of the z axis in Eq. (3.10), which will be such
that it adiabatically adapts to the local orientation of the external magnetic field.
In addition, the modulus of the magnetic field, determining the energy scale C
that characterizes the eigenvalues (3.11) and (3.12), will vary as well during this
motion.

We can therefore infer that the presence of a spatially inhomogeneous profile
of the external magnetic field translates into an effective potential for the moving
atom. In the Zeeman regime of a comparatively weak magnetic field, this effective
potential can, up to a global constant, be written as

V (~r) = −~µ · ~B(~r) , (3.17)

where the effective magnetic moment ~µ of the atom has a fixed projection onto
the local magnetic field axis, or, more precisely, as

V (~r) =
meffgeµB

2I + 1
| ~B(~r)| (3.18)

according to Eq. (3.13), with a fixed magnetic quantum number meff . Note that
the latter does not flip from an energetically unfavorable (e.g., positive) to a more
favorable (e.g., negative) value as long as the adiabaticity condition discussed
above is fulfilled. This implies in particular that an atom whose magnetic moment
is initially antiparallel to the local direction of the external magnetic field will
maintain this antiparallel orientation in the course of its motion, which is very
different from what would happen for a classical magnetic dipole.

This insight allows one to conceive magnetic field configurations whose as-
sociated effective potentials exhibit a local minimum at some point in space,
about which atoms of the considered species can therefore be confined. While
it is impossible to create magnetic field configurations that exhibit a finite local
maximum in its abolute strength | ~B|, a local minimum of | ~B| can be generated.
It is thereby possible to realize magnetic traps for atoms whose hyperfine spin
states are such that their corresponding magnetic moment is antiparallel to the
direction of the external magnetic field. In the case of 87Rb atoms, this trap-
ping property is effectively fulfilled for the hyperfine states |F = 2, mF = 2〉 and
|F = 2, mF = 1〉, as well as for the state |F = 1, mF = −1〉 as long as we have

geµB| ~B(~r)| < A for all ~r.
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(a) (b) (c)

Figure 3.4: (a) Magnetic field lines (blue arrows) created by a pair of symmetric
coils in which circulates an electric current of the same magnitude in the same
orientation (red arrows). If the distance between the coils exceeds their radius,
a local minimum in the intensity of the magnetic field along the symmetry axis
occurs at the geometric centre of the configuration. (b) To ensure that the ge-

ometric centre represents a local minimum of | ~B| also with respect to the two
transverse directions perpendicular to the symmetry axes, the two Helmholtz coils
can be enclosed in a square-shaped cage of four parallel wires in which circulates
an electric current in alternating directions, as shown by the red arrows. (c) As
shown by the cross section, the magnetic field that this cage generates within the
perpendicular plane becomes minimal on the symmetry axis.

Figure 3.4 shows an example for such a trapping configuration, which is named
Ioffe-Pritchard trap. It consists of two symmetric coils, oriented parallel to each
other, in which circulates an electric current of the same magnitude in the same
orientation. Contrary to the Helmholtz configuration, the distance between the
coils is not identical to their radius but exceeds the latter. A local minimum in
the intensity of the magnetic field along the symmetry axis is then induced at the
geometric centre of the configuration. To ensure that at this centre the intensity
of the magnetic field is minimal also with respect to the two transverse directions
perpendicular to the symmetry axes, the two Helmholtz coils can be enclosed in
a square-shaped cage of four parallel wires in which circulates an electric current
in alternating directions, as shown in Fig. 3.4(b). We thereby obtain an effective
trapping potential for atoms whose magnetic moment is oriented antiparallel to
the direction of the magnetic field. Near the geometric centre (which we identify
with the origin of the coordinate system, with the z axis being oriented along
the symmetry axis of the configuration), this trapping potential can, up to an
unimportant global constant, be approximated by an anisotroic three-dimensional
parabolic confinement of the form

V (~r) =
1

2
k⊥
(

x2 + y2
)

+
1

2
k||z

2 , (3.19)

where the two (positive) spring constants k|| and k⊥ can respectively be tuned by
the currents circulating within the two coils as well as within the four cage wires.
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(a)

Figure 3.5: Anti-Helmholtz configuration of two coils, giving rise to a node of
the magnetic field in the geometric centre. As a consequence, the adiabaticity
condition cannot be granted within this configuration. An atom that moves along
the symmetry axis and has its magnetic moment polarized parallel to this axis
will, when passing across the geometric centre, undergo a sudden change of the
orientation of its magnetic moment with respect to the direction of the external
magnetic field, simply becaues the latter suddenly changes its sign at this point.
This anti-Hemlholtz configuration is therefore unsuited to magnetically confine
ultracold atoms.

Naively, one might consider that an opposite orientation of the currents cir-
culating in the two coils, as shown in Fig. 3.5, should give rise to an even easier
possibility to realize a magnetic trap, since in that case the magnetic field exactly
vanishes in the geometric centre of the configuration. However, a vanishing mag-
netic field implies that the condition for the validity of the adiabatic theorem,
namely that the time scale on which the orientation and strength of the magnetic
field at the position of the atom effectively vary is slow compared to the inverse
of the Zeeman splitting, can no longer be granted, since the hyperfine sublevels
become degenerate at the point where ~B vanishes. If we consider, e.g., an atom
that propagates along the symmetry axis and has its magnetic moment polarized
parallel to this axis, the orientation of this magnetic moment with respect to the
direction of the external magnetic field suddenly changes when the atom passes
across the geometric centre of the configuration, trivially because the direction
of the magnetic field suddenly changes sign at that point.

As a consequence, the anti-Helmholtz configuration of the two coils depicted
in Fig. 3.5 cannot be used to magnetically trap atoms. In combination with
laser beams, it can nevertheless be employed to conceive magneto-optical traps

which allow one to confine atoms and reduce their temperature via laser cooling
techniques. However, those magneto-optical traps are unsuited to reach ultracold
temperatures yielding Bose-Einstein condensation of the atomic gas since the
permanent absorption and re-emission of laser photons that takes place in such a
trap introduce an intrinsic lower bound for the temperature that can be reached
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through laser cooling.

Problems

3.2 Show the validity of Eqs. (3.11) et (3.12).

3.3 Interaction with a laser

Trapping configurations for ultracold alkali atoms can be created not only by
external magnetic fields but also by laser radiation the photon energy of which
lies close to the (dipole allowed) intra-atomic transition from the ground state to
the first excited p state of the atom. This can be shown from first principles. We
start, for this purpose, from the effective two-body Hamiltonian

H =
1

2m

(

~p− e ~A(~r, t)
)2

+
1

2me

(

~pe + e ~A(~re, t)
)2

+ V(~re − ~r) (3.20)

describing the mutual interaction between the unpaired valence electron and the
atomic core as well as their respective interactions with the electromagnetic field
induced by the laser. Here, ~re and ~r represent the positions of the valence electron
and the atomic nucleus, respectively, and ~pe and ~p are their associated momen-
tum operators. Their mutual electron-core interaction energy is modeled by an
effective potential V which in practice depends only on the distance between the
electron and the nucleus. Using the Coulomb gauge, the laser field is represented
in terms of the vector potential ~A, which allows one to determine the associated
electric and magnetic fields according to

~E(~r, t) = − ∂

∂t
~A(~r, t) , (3.21)

~B(~r, t) = ~∇× ~A(~r, t) (3.22)

for all (~r, t). In the case of optical or infrared laser beams with not too strong
intensities, we can neglect the effect of the magnetic field as compared to the
electric one and use the fact that spatial variations of the field amplitudes take
place on length scales that are much larger than the Bohr radius, which amounts
to performing the so-called dipole approximation. This allows one to derive,
through a suitable gauge transformation of the atomic wavefunction, the effective
single-particle Hamiltonian

H = − ~2

2m

∂2

∂~ρ2
+ V(~ρ) + e ~E(~r, t) · ~ρ (3.23)

describing the dynamics in the intra-atomic relative coordinate ~ρ = ~re−~r, where
the position ~r of the nucleus enters as a parameter.
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For the sake of simplicity, we assume for the following that the considered
laser beam is monochromatic and linearly polarized. The electric field that it
generates is therefore modeled as

~E(~r, t) = ~E0(~r) cos (ωt− ϕ(~r)) (3.24)

with a spatially dependent vectorial amplitude ~E0 and a scalar phase function ϕ,
which can both be considered to be locally constant on a scale that is comparable
to Bohr’s radius. In view of defining an optical potential with this laser beam,
we furthermore assume its photon energy to be close to the energy of a dipole
allowed intra-atomic transition, typically from the electronic ground state to the
first excited p state of the alkali atom, i.e., we have ~ω ≃ E1−E0, where E0 and
E1 are the energies of the involved electronic ground state |0〉 and excited state
|1〉, respectively. In the case of 87Rb, those two states would be characterized by
the quantum numbers n = 5, l = 0, ml = 0 as well as n = 5, l = 1, ml = 0,
respectively, where the z axis that effectively defines the notion of the magnetic
quantum number ml is identified with the local direction of the electric field
amplitude vector ~E0(~r) at the position ~r of the atom. Note that we have to
exclude the case of an exact resonance with the intra-atomic transition, in order
not to significantly populate the excited state via this laser radiation. The laser
photon energy is therefore slightly detuned from the energy difference E1 − E0,
and this on a scale that exceeds the natural linewidth of the excited energy level.

The application of time-dependent perturbation theory under these conditions
yields that the ground state is not appreciably depopulated in the presence of the
laser beam, but undergoes a shift E0 7→ E0 + ∆E0 in its effective eigenenergy.
This shift is explicitly evaluated as

∆E0 = −|〈1|e~ρ · ~ez|0〉|2
E1 − E0 − ~ω

I(~r)

2ǫ0c
≡ V (~r) (3.25)

in lowest nonvanishing order in the laser field amplitude ~E0(~r), where

I(~r) =
1

2
ǫ0c|~E0(~r)|2 (3.26)

denotes the intensity of the laser at the position ~r of the atom. The spatial
intensity profile of the laser therefore translates into an effective potential V (~r)
governing the motion of the atom, which is defined by Eq. (3.25). In contrast
to the analogous effective potential (3.18) that is obtained in the presence of a
magnetic field, the (positive or negative) sign of this effective potential is not a
priori fixed for a given choice for the atomic hyperfine state, but can be changed
by properly tuning the laser frequency. Most specifically, an overall attractive
effective potential, with V (~r) ≤ 0 for all ~r, is obtained if the laser is red-detuned
with respect to the intra-atomic transition, i.e., if ~ω < E1 − E0, while a blue-

detuned laser, with ~ω > E1−E0, leads to an overall repulsive effective potential,
with V (~r) ≥ 0 for all ~r.



3.3. INTERACTION WITH A LASER 59

���
���
���
���
���
���
���
���
���
���
���

���
���
���
���
���
���
���
���
���
���
���

��
��
��
��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��
��
��
��

(a)

(b)

(c)

Figure 3.6: Sketch of various optical trapping configurations induced by laser
beams: (a) optical dipole trap, created by a focused red-detuned laser beam;
(b) one-dimensional optical lattice, created by a pair of two counterpropagating
laser beams with the same wavelength; (c) two-dimensional optical lattice, cre-
ated by two orthogonal pairs of counterpropagating laser beams with the same
wavelength. Curved lines, ellipses, and circles show the equipotential levels of the
effective optical potential that the atoms are exposed to within such laser beam
configurations.

This insight allows one to conceive trapping potentials for ultracold atoms
using optical means. The simplest way to create such an optical trap consists
in directing a red-detuned laser beam onto a circularly shaped focusing lens. As
illustrated in Fig. 3.6(a), a local maximum of the laser intensity is then induced
at the focal point behind the lens. Owing to the fact that the laser is red-
detuned, this local intensity maximum corresponds to a local minimum of the
effective potential (3.25) about which the atoms can consequently be trapped.
Very similarly to the local potential (3.19) that we obtained for the magnetic
Ioffe-Pritchard trap, this optical dipole trap gives rise to an anisotroic three-
dimensional parabolic confinement of the form

V (~r) =
1

2
k⊥
(

x2 + y2
)

+
1

2
k||z

2 (3.27)

in the near vicinity of the trap centre, where we identify the origin with the focal
point and the z axis with the propagation direction of the laser field (and omit
an unimportant global constant). The spring constants k|| and k⊥ can be tuned
by the varying the laser beam intensity and by changing the focal characteristics
of the lens.

Using pairs of counterpropagating laser beams with the same frequency (which,
in practice, can be generated from a single laser beam by means of beam split-
ter devices and mirrors), we can generate an optical lattice corresponding to a
spatially periodic potential with a period that equals half the wavelength of the
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laser, owing to the the periodic intensity profile of the standing wave that results
from the superposition of the two laser beams. Such an optical lattice can be
attractive or repulsive, depending on the detuning of the laser frequency. As
illustrated in Fig. 3.6(b), a single pair of counterpropagating laser beams gives
rise to a one-dimensional optical lattice defined along the axis of beam propaga-
tion, whose transverse extent is effectively determined by the waist of the laser
beams and can consequently be reduced by subjecting those beams to focusing,
as explained above for the optical dipole trap. Two or three pairs of counter-
propagating laser beams, defined along mutually perpendicular axes, give rise to
two- or three-dimensional lattice potentials, respectively. Note that it would be
extremely hard to engineer such lattices, which are defined with spatial periods
in the submicron regime, by magnetic fields that are generated from coils and
current-carrying electric wires.

Lasers can not only be used to create trapping configurations for a gas of cold
alkali atoms, but also to cool such a trapped gas. A simple strategy to achieve this
goal consists in exposing the atoms to a couple of laser beams which irradiate
the gas from different directions with a frequency that is slightly red-detuned
with respect to the intra-atomic transition from the electronic ground state to
the excited p state. Due to the Doppler effect, atoms moving against such a
laser beam will, in their inertial reference frame, effectively see a blue-shift of the
associated photon frequency, which implies that the latter gets closer to the intra-
atomic transition frequency. Resonant transitions between the ground state of
the atom and its first excited p state can then occur at specific positive velocity
components in the direction against the propagation of the laser beam. The
recoil that the atom experiences after the absorption of a laser photon therefore
diminishes the speed of the atom and thence gives rise to a reduction of its kinetic
energy.

More sophisticated laser cooling techniques that are more effective than this
Doppler cooling reside on a spatial tuning of the intra-atomic transition fre-
quency, which can be achieved within magneto-optical traps. As for Doppler
cooling, those techniques are concerned with a fundamental lower limit for the
temperature that can thereby be reached. This limit is given by the recoil energy
~2k2photon/(2m) that an atom receives after the spontaneous re-emission of the ab-
sorbed laser photon into some arbitrary direction. Generally, the temperatures
that can thereby be reached are of the order of ∼ 10µK, which is not sufficiently
low to yield Bose-Einstein condensation.

To further reduce the temperature of an atomic gas below this recoil limit, an
alternative technique has to be employed, which effectively amounts to performing
an evaporative cooling process. To this end, we consider that the atoms are, after
a preliminary laser cooling stage, exposed to a magnetic trapping potential which,
as was described in the previous section, provides a confinement for atoms whose
magnetic moment is antiparallel to the direction of the external magnetic field. A
spin-polarized sample of trapped atoms that are prepared in a specific hyperfine
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|F = 2, mF = −2〉

Figure 3.7: Sketch of the working principle of evaporative cooling. Spin-polarized
atoms in a hyperfine state (e.g., |F = 2, mF = 2〉 for 87Rb) in which the orien-
tation of the magnetic moment is antiparallel to the external magnetic field are
confined within a magnetic field configuration that exhibits a finite local mini-
mum in space. A radio-frequency field can induce spin-flips of such atoms to an
untrapped hyperfine state (e.g., |F = 2, mF = −2〉 for 87Rb) at positions where
the energy difference between the trapped and the untrapped state equals ~ωrf

with ωrf the frequency of this electromagnetic radiation. By tuning this frequency
such that those resonant transitions occur suitably far away from the trap centre,
atoms exhibiting high kinetic energies can thereby be removed from the trap.
The gas of remaining atoms is then cooled through re-thermalization.

state featuring this antiparallel orientation (e.g., |F = 2, mF = 2〉 for 87Rb) is
then exposed to an electromagnetic field in the radio-frequency regime (i.e., with
a frequency of the order of ∼ MHz) which is tuned such that it induces resonant
transitions to an untrapped hyperfine state (e.g., to |F = 2, mF = −2〉 for 87Rb)
at positions that are off-centre with respect to the magnetic trap and therefore
correspond to an enhanced potential energy. As sketched in Fig. 3.7, atoms with
relatively high kinetic energies will therefore, at some point during their motion
within the trap, come across spatial regions where a flip of their magnetic moment
from a trapped to an untrapped orientation is induced by the radio-freqency field,
which implies that they are ejected from the trap. The thermal distribution of the
spin-polarized sample within the magnetic trap is therefore cut off at high energies
by this “radio-frequency knife”. Provided the atoms of the gas interact with each
other on reasonable time scales, this cut-off gives rise to a re-thermalization of the
gas, with the effect that its temperature is lowered. High phase-space densities
at temperatures below 1µK can thereby be reached without loosing too many
atoms, which is sufficient to trigger Bose-Einstein condensation.
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Problems

3.3 Show how effective one-body Hamiltonian in the dipole approximation
(3.23) can be derived from the two-body Hamiltonian (3.20) by means of a
suitable gauge transformation of the wavefunction. Assume, for this pur-
pose, that the vector potential varies slowly on a scale corresponding to
Bohr’s radius and that the magnetic field resulting from this vector poten-
tial can be neglected.

3.4 Show how Eq. (3.25) can be derived using time-dependent perturbation
theory.

3.4 The Born-Oppenheimer approximation

Atoms in a trapped quantum gas do not only interact with external electric and
magnetic fields but also with each other. As they are electrically neutral particles
that do not exhibit an intrinsic permanent dipole moment, the effect of this atom-
atom interaction is relatively weak in absolute terms, to the extent that the basic
statistical assumptions leading to classical and quantum ergodicity, as discussed
in Chapter 1, can safely be considered to be valid. Nevertheless, the presence of
atom-atom interaction can by no means be totally neglected for Bose-Einstein
condensates made of alkali atoms. It gives rise to a number of properties that are
characteristic for such condensates, including, in particular, their superfluidity.

It is therefore mandatory to develop a simplified but quantitative model for
describing the interaction between atoms in a quantum gas. We start, for this
purpose, from a microscopic first-principles theory of the quantum gas, for which
we take into account that each atom in the gas is constituted by Z electrons
with negative electric charge −e and spin 1/2 (with Z being an odd number
for alkali atoms) as well as by a point-like nucleus with the positive charge Ze
and a nuclear spin I. Neglecting the presence of external magnetic or optical
confinement potentials for the moment, we can formulate this microscopic first-
principles theory of a gas of N neutral atoms in terms of the Hamiltonian

H =

N
∑

i=1

1

2m
~p 2
i +

ZN
∑

j=1

1

2me
~p 2
e,j +

N
∑

i=1

ZN
∑

j=1

VeN (Xi, ξj)

+

N
∑

i=2

i−1
∑

i′=1

VNN (Xi, Xi′) +

ZN
∑

j=2

j−1
∑

j′=1

Vee (ξj, ξj′) . (3.28)

Here, ~pi and ~pe,j represent the momentum operators of the ith nucleus and the
jth electron, respectively, and m and me denote their corresponding masses. The
potential energy is expressed in terms of the generalized coordinates Xi ≡ (~ri,Σi)
and ξj ≡ (~re,j, σj) for the ith nucleus and the jth electron, respectively, where
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~ri and ~re,j represent their position operators while Σi ∈ {−I,−I + 1, . . . , I} and
σj ∈ {−1/2, 1/2} denote their spin states with respect to a given reference axis in
the spatial coordinate system. Taking into account the fact that the interaction
between the involved particles is dominated by electrostatic Coulomb attraction
or repulsion, we can justify the first-order approximations

VeN (Xi, ξj) ≃ − Ze2

4πǫ0 |~ri − ~re,j|
, (3.29)

VNN (Xi, Xi′) ≃ Z2e2

4πǫ0 |~ri − ~ri′|
, (3.30)

Vee (ξj, ξi′) ≃ e2

4πǫ0 |~re,j − ~re,j′|
(3.31)

for the electron-nucleus, nucleus-nucleus, and electron-electron interaction po-
tentials, respectively, where ǫ0 denotes the vacuum permittivity. The above ex-
pressions (3.29)–(3.31) ought to be amended by spin-dependent terms, such as
spin-spin interaction and spin-orbit coupling, in order to carry out numerically
accurate atomic and molecular structure calculations on the basis of the Hamil-
tonian (3.28).

Equation (3.28) can be rewritten as

H =
N
∑

i=1

1

2m
~p 2
i +Hel (3.32)

where we introduce by

Hel =

ZN
∑

j=1

1

2me
~p 2
e,j +

N
∑

i=1

ZN
∑

j=1

VeN (Xi, ξj) +

ZN
∑

j=2

j−1
∑

j′=1

Vee (ξj, ξj′)

+

N
∑

i=2

i−1
∑

i′=1

VNN (Xi, Xi′) (3.33)

an electronic Hamiltonian which parametrically depends on the nuclear coordi-
nates X1, . . . , XN . This Hamiltonian can be diagonalized in the electronic coor-
dinates. We thereby obtain its normalized fermionic eigenstates |Φn〉 (i.e., the
eigenstates that are fully antisymmetric in the electronic coordinates) satisfying
Hel|Φn〉 = Un|Φn〉 with the associated eigenenergies Un. Both eigenstates and
eigenvalues parametrically depend on the positions and spins of the nuclei, i.e.
we have Un ≡ Un(~r1Σ1, . . . , ~rNΣN ) and can express the associated wavefunctions
as

〈ξ1, . . . , ξZN |Φn〉 = Φn (~re,1σ1, . . . , ~re,ZNσZN ;~r1Σ1, . . . , ~rNΣN ) . (3.34)
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Having thereby formally solved the electronic problem for all possible choices
for the positions and spins of the nuclei, we can decompose the wavefunction Ψ
of the many-body system in the above electronic eigenbasis. This yields

Ψ (X1, . . . , XN , ξ1, . . . , ξZN , t) =
∑

n

∫

ψn (X1, . . . , XN , t)

×Φn (ξ1, . . . , ξZN ;X1, . . . , XN) , (3.35)

where the thereby introduced nuclear wavefunctions ψn can be obtanied from the
projections of Ψ to the electronic eigenstates Φn. As the latter are of mixed dis-
crete and continuous nature at high energies, the above decomposition generally
involves a combination of sums and integrals. Projecting now the many-body
Schrödinger equation i~ ∂

∂t
Ψ = HΨ onto the electronic eigenstates Φn gives then

rise to a system of coupled time evolution equations

i~
∂

∂t
ψn (X1, . . . , XN) =

(

N
∑

i=1

1

2m
~p 2
i + Un (X1, . . . , XN)

)

ψn (X1, . . . , XN)

+
∑

n′

∫ N
∑

i=1

1

m
~p
(i)
nn′ (X1, . . . , XN) · ~piψn′ (X1, . . . , XN)

+
∑

n′

∫

Tnn′ (X1, . . . , XN)ψn′ (X1, . . . , XN) (3.36)

with the coupling coefficients

~p
(i)
nn′ (X1, . . . , XN) =

∑

σ1···σZN

∫

d3re,1 · · · d3re,ZNΦ
∗
n (ξ1, . . . , ξZN ;X1, . . . , XN)

×~

i

∂

∂~ri
Φn′ (ξ1, . . . , ξZN ;X1, . . . , XN) , (3.37)

Tnn′ (X1, . . . , XN) =
∑

σ1···σZN

∫

d3re,1 · · · d3re,ZNΦ
∗
n (ξ1, . . . , ξZN ;X1, . . . , XN)

×
N
∑

i=1

−~2

2m

∂2

∂~r2i
Φn′ (ξ1, . . . , ξZN ;X1, . . . , XN) . (3.38)

The Born-Oppenheimer approximation essentially consists in neglecting within
Eq. (3.36) the second and third lines containing the coupling terms between dif-
ferent electronic states, such that the nuclear wavefunctions evolve according to

i~
∂

∂t
ψn (X1, . . . , XN) ≃

N
∑

i=1

1

2m
~p 2
i ψn (X1, . . . , XN)

+Un (X1, . . . , XN)ψn (X1, . . . , XN) . (3.39)
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This approximation is very well justified since the nuclear mass is much larger
than the electron mass, i.e., we have m/me ≫ 1. Indeed, we can infer from the
structure of the electronic Hamiltonian (3.33) in combination with the Coulomb
interaction potentials (3.29)–(3.31) that the electronic eigenfunctions Φn vary in
both their electronic and nuclear coordinates on length scales that are typically
of the order of Bohr’s radius aB = 4πǫ0~

2/(mee
2) (eventually to be amended

by a prefactor of the order of 1/Z for tightly bound core-shell electrons). The
coefficients that induce the couplings between different electronic levels within
Eq. (3.36) scale then as ~p

(i)
nn′ ∼ ~/aB as well as Tnn′ ∼ ~2/(2ma2B) = meR/m

according to Eqs. (3.37) and (3.38), respectively, where we introduce by R =
~2/(2mea

2
B) Rydberg’s unit of energy. As the latter represents the characteristic

scale of the associated eigenenergies Un, we can through simple dimensional con-
siderations infer the length scale ~/

√
2mR on which the nuclear wavefunctions

ψn typically vary according to Eq. (3.39). The effective coupling matrix elements
between different electronic levels consequently scale as ∼

√

me/mR according to
the second line of Eq. (3.36), while the third line induces couplings of the order of
(me/m)R. Those couplings are thus significantly smaller than the typical spac-
ing |Un − Un′| ∼ R between different electronic energy levels and can therefore
safely be neglected unless two such energy levels happen to accidentally coincide,
i.e., unless Un(X1, . . . , XN) = Un′(X1, . . . , XN), at some specific configuration
(X1, . . . , XN) of the nuclear coordinates.

Of particular relevance is the electronic ground state Φ0 of the gas, which
is generally attained at low temperatures. Its associated nuclear wavefunction
ψ0 evolves, in the framework of the above Born-Oppenheimer approximation,
according to the Schrödinger equation (3.39) which is defined in terms of the
effective N -body interaction potential U0(X1, . . . , XN). In the case of a dilute
gas in which close atom-atom encounters involving inter-nuclear distances of the
order of few Bohr radii are rather rare, the latter N -body potential can be approx-
imately represented by a superposition of two-body interaction terms according
to

U0(X1, . . . , XN) ≃
N
∑

i=2

i−1
∑

i′=1

U0(|~ri − ~ri′|) , (3.40)

where the Born-Oppenheimer potential curve U0 describes the effective interac-
tion energy of two atoms as a function of the interatomic distance r = |~ri − ~ri′|.
For large r → ∞ we are effectively dealing with two independent neutral atoms
and therefore trivially obtain U0(r) ≃ 2E0 where E0 is the (negative) ground-state
energy of a single atom. As the atoms are moved closer to each other, a sponta-
neous polarisation of the electronic cloud within one of them can induce a weak
electric field at the position of the other atom, which in turn polarizes the elec-
tronic cloud of that other atom as well. This induced dipole-dipole interaction,
which is also termed van der Waals interaction, gives rise to a weak attractive
potential between the atoms. It asymptotically scales as U0(r) − 2E0 ≃ −C/r6
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Figure 3.8: Qualitative sketch of the two-body van der Waals interaction potential
between two identical alkaline atoms as a function of their distance r, for both
the singlet (blue curve) and the triplet configuration (red curve) of the electronic
spin state.

for large distances r between the atoms4, where the associated van der Waals
coefficient C is found to lie in the range 103 < a6BC/(2R) < 104 for alkali atoms.
At extremely short distances r ≪ aB, on the other hand, the two-body potential
trivially diverges due to Coulomb repulsion between the nuclei, which in that
case can no longer be screened by the electrons due to Heisenberg’s uncertainty
principle. The local and global minimum that is located in between these two
extremal situations corresponds to the formation of a diatomic molecule.

Figure 3.8 shows a qualitative sketch of the two-body van der Waals interac-
tion potential U(r) = U0(r)−2E0 as a function of r for both the spin-singlet and
the spin-triplet configuration of the two valence electrons. Contrary to hydrogen,
not only the singlet but also the triplet configuration features a bonding state
of the two atoms, albeit with a much more shallow potential minimum than for
the singlet. In absolute terms, the depth of this triplet potential miminum is
equivalent to a few hundred Kelvin in the case of 87Rb, which is many orders of
magnitude larger than the typical temperatures characterizing an ultracold quan-
tum gas, and the singlet potential well has a depth of about 6×103K. The precise
knowledge of the shape of this Van der Waals interaction potential is therefore
not necessarily required in order to describe the effect of atom-atom interaction
within an ultracold dilute quantum gas where the absolute and relative kinetic
energies are of the order of µK. We can, for this purpose, permit ourselves to
replace it by a simplified model potential which is chosen such that it correctly
reproduces the low-energy two-body collision processes between the atoms of the
gas.

4At extremely large inter-atomic distances which are typically not relevant in trapped gases,
this scaling law is to be amended due to the relativistic Casimir effect which accounts for
the finite propagation speed of electromagnetic radiation. This gives rise to a decrease of the
interaction potential proportional to −r−7 for very large r.
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Problems

3.5 Show that the Van der Waals interaction potential U0(r)−2E0 scales asymp-
totically as U0(r)−2E0 ≃ −C/r6 for large inter-atomic distances r. Assume
for this purpose that only the valence electrons of the two atoms effectively
participate at the interaction process, while the inner core-shell electrons of
each one of the atoms are not appreciably affected by the presence of the
other atom.

3.5 Two-body scattering

To develop a simple model for the atom-atom interaction that correctly describes
the collision between two atoms in the ultracold gas, it is useful to theoretically
study such two-body collision processes. We therefore start from the Schrödinger
equation

i~
∂

∂t
Ψ(~r1, ~r2, t) = − ~2

2m

(

∂2

∂~r 2
1

+
∂2

∂~r 2
2

)

Ψ(~r1, ~r2, t)+U(~r1−~r2)Ψ(~r1, ~r2, t) (3.41)

which describes two identical alkali atoms with the mass m and the mutual in-
teraction energy U(~r1 − ~r2). The latter is, in practice, given by the energetically
lowest Born-Oppenheimer potential curve that effectively results from restricting
the atoms to a given hyperfine sublevel within a magnetic trap. It would corre-
spond to the triplet curve (sketched in red in Fig. 3.8) in the presence of a very
strong magnetic field for which trapping is achieved by polarizing the spins of the
two valence electrons along the magnetic field axis.

A first simplification of the two-body problem is achieved by introducing the
centre-of-mass and relative coordinates

~R =
1

2
(~r1 + ~r2) , (3.42)

~r = ~r1 − ~r2 (3.43)

in which the Schrödinger equation (3.41) separates. More precisely, inserting the
Fourier series ansatz

Ψ(~r1, ~r2, t) = Ψ(~R + ~r/2, ~R− ~r/2, t) =

∫

d3Kψ( ~K)(~r, t)ei
~K·~R (3.44)

into Eq. (3.41) and using the relation

∂2

∂~r 2
1

+
∂2

∂~r 2
2

=
1

2

∂2

∂ ~R 2
+ 2

∂2

∂~r 2
(3.45)

yields that the Fourier components ψ( ~K), which are associated with plane-wave
states of the centre-of-mass motion with a fixed total momentum ~ ~K, are not
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coupled with each other and evolve independently according to the effective one-
body Schrödinger equation

i~
∂

∂t
ψ( ~K)(~r, t) =

(

− ~2

2mr

∂2

∂~r 2
+ U(~r) +

~2K2

4m

)

ψ( ~K)(~r, t) , (3.46)

where we introduced by

mr =
m

2
(3.47)

the reduced mass associated with the motion in the relative coordinates. The
two-body collision problem posed in this section is thereby reduced to an effective
one-body scattering problem in the relative coordinates, which is to be solved for
each one of the Fourier components ψ( ~K).

To this end, we first perform the gauge transformation

ψ( ~K)(~r, t) ≡ ψ(~r, t)e−iEKt/~ (3.48)

with EK = ~2K2/(4m) for all ~r, t, such that the transformed wavefunction ψ (in

which we leave out the ~K label for the sake of simplicity) evolves according to
the Schrödinger equation

i~
∂

∂t
ψ(~r, t) = − ~2

2mr

∂2

∂~r 2
ψ(~r, t) + U(~r)ψ(~r, t) (3.49)

in the presence of the central scattering potential U that asymptotically vanishes
for large distances from the origin5, i.e., we have U(~r) → 0 for r → ∞. The
initial state of this wavefunction in the case of a scattering problem corresponds
to a wave packet that is prepared asymptotically far away from the origin and
moves towards it. Since the presence of a scattering potential U that has finite
support only in the immediate vicinity of the origin is not relevant for the initial
evolution of such a wave packet, we can represent the solution of the Schrödinger
equation (3.49) as

ψ(~r, t0) =

∫

d3k α(~k)ei
~k·~re−iEkt0/~ (3.50)

for times t0 → −∞ sufficiently far in the asymptotic past, with α(~k) the Fourier
components of the wavefunction, corresponding to its momentum distribution,
and

Ek =
~2k2

2mr

. (3.51)

5In the case that the Born-Oppenheimer potential U is defined such that it asymptotically
tends to a nonzero constant −2E0 for large distances, this latter constant ought to be factored
out as well by the gauge transformation (3.48), i.e., we would define EK = ~2K2/(4m)− 2E0

in that case.
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According to quantum scattering theory, the initial wavefunction (3.50) evolves
according to

ψ(~r, t) =

∫

d3k α(~k)ψ~k(~r)e
−iEkt/~ (3.52)

for finite times t at which parts of the wave packet move across the origin of the
coordinate system, where the scattering wavefunction ψ~k satisfies the Lippmann-

Schwinger equation

ψ~k(~r) = ei
~k·~r − mr

2π~2

∫

d3r′
eik|~r−~r ′|

|~r − ~r ′|U(~r
′)ψ~k(~r

′) . (3.53)

The latter describes the coherent superposition of an incident plane wave and
all outgoing spherical waves that emanate from the positions ~r ′ at which the
scattering potential is nonvanhishing, whose weight in this superposition is pro-
portional to U(~r ′)ψ~k(~r

′). It is a straightforward exercise to verify that the self-
consistent expression (3.53) for the scattering wavefunction solves the stationary
Schrödinger equation

− ~2

2mr

∂2

∂~r 2
ψ~k(~r) + U(~r)ψ~k(~r) = Ekψ~k(~r) (3.54)

and can therefore be seen as an integral representation of the latter.
We now make use of the fact that the two-body interaction potential displays

a spherical symmetry, such that we can write it as U(~r) ≡ u(|~r|), and falls
off to zero very rapidly, namely according to u(r) ∼ −r−6, for large distances
r → ∞ from the origin. In that case, the asymptotic behaviour of the scattering
wavefunction can be approximately expressed as

ψ~k(~r) ≃ ei
~k·~r − a(θ)

r
eikr (3.55)

for large |~r| → ∞, with a scattering amplitude a(θ) that depends on the polar

angle θ defined with respect to the wave vector ~k, such that we have ~k·~r = kr cos θ.
By means of a Taylor series expansion in the integral on the right-hand side of
Eq. (3.53), this scattering amplitude is obtained as

a(θ) ≃ mr

2π~2

∫

d3r′u(r′)ψ~k(~r
′)e−ik~er·~k (1 +O(r′/r)) (3.56)

up to corrections that scale as r′/r, where ~er = ~r/r is the unit vector in the di-
rection ~r. A perturbative approach, in the spirit of the Born series, would consist
in solving Eq. (3.55) through iteratively inserting more and more refined approx-
imations for ψ~k into the right-hand side of Eq. (3.56). However, this approach
requires the scattering potential to be globally small, i.e., such that |u(r)| can be
bounded from above by a perturbative parameter, which is clearly not the case
for the Van der Waals interaction potential of two alkali atoms.
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We therefore pursue a different approach to determine a(θ), which consists
in decomposing the solution ψ~k of the stationary Schrödinger equation (3.54) in
spherical harmonics, using the fact that U exhibits spherical symmetry. As we
know already from Eq. (3.55) that ψ~k does not depend on the azimutal angle

defined with respect to the ~k axis, this decomposition simplifies to

ψ~k(~r) =
∞
∑

l=0

Pl(cos θ)
χl(r)

r
(3.57)

where Pl is the Legendre polynomial of degree l. Inserting this ansatz into
Eq. (3.54) yields the one-dimensional Schrödinger equation

− ~2

2mr
χ′′
l (r) + Ueff(r)χl(r) = Ekχl(r) (3.58)

with

Ueff(r) = u(r) +
l(l + 1)~2

2mrr2
(3.59)

that the radial wavefunction χl has to fulfill, in combination with the boundary
condition χl(0) = 0 that is needed in order not to give rise to a singularity of ψ~k

at the origin. As we have Ueff(r) → 0 for r → ∞, the asymptotic behaviour of
this radial wavefunction can generally be written as

χl(r) = Al sin(kr − lπ/2 + δl) (3.60)

for some amplitude Al ∈ C and some phase shift δl ∈ R, the latter being defined
such that it would vanish if the scattering potential u was not there, i.e., such
that we would have δl = 0 for all l if u(r) ≡ 0 for all r. This choice becomes
obvious from an analogous decomposition of the incident plane wave according
to

ei
~k·~r =

∞
∑

l=0

il(2l + 1)Pl(cos θ)jl(kr) (3.61)

with the spherical Bessel function jl which is approximately evaluated as

jl(kr) ≃
1

kr
sin(kr − lπ/2) (3.62)

for large distances kr ≫ 1. Inserting the expressions (3.57) and (3.61) in combi-
nation with Eqs. (3.60) and (3.62) into the asymptotic expression (3.55) for the
scattering wavefunction yields the equation

Al =
il

k
(2l + 1)eiδl (3.63)
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Figure 3.9: Radial profiles of the s-wave component χ0 of the scattering wave-
function in the presence of the Lennard-Jones potential (3.66) with A = 700,
displayed in panel (a). The scattering wavefunctions were calculated for the en-
ergies (b) Ek = 0.01E0 and (c) Ek = 0.001E0. The dashed lines in the panels (b)
and (c) show the radial profiles χ0(r) = A0 sin(kr) that would result for A = 0,
i.e., if the scattering potential was not there (u ≡ 0). An s-wave scattering length
of the order of as ≃ 5r0 is obtained for both scattering wavefunctions.

for the radial wave amplitude, from which we obtain the expression

a(θ) = −1

k

∞
∑

l=0

(2l + 1) sin δle
iδlPl(cos θ) , (3.64)

for the scattering amplitude. The latter is therefore fully determined in terms of
the scattering phases δl which encode the characteristics of the potential u and
its effect onto the scattering process under consideration.

We can now make use of the fact that the two-body collision process takes
place at ultra-low centre-of-mass and relative kinetic energies, which implies that
k−1 is by far the largest length scale of the problem. We can therefore permit
ourselves to evaluate the expression (3.64) in the formal limit k → 0. To this
end, it can be shown that for scattering potentials falling off as u(r) ∼ −r−n with
n > 3 for large r → ∞ the associated scattering phases scale as

δl ∝
{

k2l+1 : 2l + 1 < n− 2
kn−2 : 2l + 1 ≥ n− 2

(3.65)

in the limit k → 0. This is illustrated in Figs. 3.9 and 3.10 for the case of the
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Figure 3.10: Same as Fig. (3.9) for the p-wave components χ1. Panel (a) shows
the effective potential (3.59) composed by the Lennard-Jones potential (3.66)
with A = 700 and the angular momentum barrier ~2/(mrr

2) for l = 1. The
dashed lines in the panels (b) and (c) show the radial profiles that would re-
sult for A = 0. While a tiny displacement between the radial part of the true
scattering wavefunction and the unperturbed radial function can still be seen
for E = 0.01E0, the two wave profiles become practically indistinguishable for
E = 0.001E0.

Lennard-Jones potential

u(r) = AE0

[

(r0
r

)12

−
(r0
r

)6
]

(3.66)

with E0 = ~2/(mrr
2
0) and A = 700. As we see in Fig. 3.9, the spatial displace-

ment between the radial wavefunction χ0 associated with the s-wave and the
corresponding unperturbed radial wavefunction, given by χ0(r) = A0 sin(kr) in
the case of the s-wave, does not significantly vary in absolute terms with the wave
number k. Consequently, the corresponding scattering phase δ0, which one can
identify with the relative spatial displacement normalized with respect to the in-
verse wave number k−1, scales linearly with k for small k. This scaling is stronger
than linear for the p-wave, as can be seen in Fig. 3.10. Indeed, a finite tunneling
barrier arises for l = 1 as well as for higher angular momenta, the spatial extent of
which increases with decreasing energy. Consequently, any difference that arises
between the radial wavefunction χl and its unperturbed counterpart close to the
origin becomes strongly suppressed on the outer side of this tunneling barrier,
and this suppression becomes more effective with decreasing wave number.
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We can therefore set sin δl ≃ δl for all l ∈ N0 and hence obtain, via the scaling
laws (3.65),

1

k
sin δl ∝







k0 : l = 0
k2 : l = 1
k3 : l ≥ 2

(3.67)

for the Van der Waals potential describing the two-body interaction between
neutral atoms, featuring the exponent n = 6 within Eq. (3.65). In the formal
limit k → 0, the expression (3.64) for the scattering amplitude therefore simplifies
to

a(θ) = −1

k
δ0e

iδ0 +O(k2) (3.68)

up to terms that scale quadratically with k. Defining by

as = −δ0
k

(3.69)

the s-wave scattering length, we can rewrite Eq. (3.68) as

a(θ) = as(1− ikas) +O(k2) = as +O(k) . (3.70)

The low-energy collision between two atoms is therefore dominantly described
by the isotropic s-wave component of the corresponding scattering process in the
relative coordinate, giving therefore rise to the scattering wavefunction

ψ~k(~r) ≃ ei
~k·~r − as

r
eikr (3.71)

that features a perfectly spherical scattered wave emanating from the origin. The
expression (3.71) simplifies to

ψ~k(~r) ≃ 1− as
r

(3.72)

in the formal limit k → 0 where we are dealing with the hierarchy of length
scales r0 ≪ r ≪ 1/k, with r0 being the intrinsic length scale characterizing the
two-body atom-atom interaction potential.

It is rather instructive to analytically calculate this s-wave scattering length
for the case of a simple piecewise constant scattering potential of the form

u(r) =

{

−U0 : r < r0
0 : r ≥ r0

. (3.73)

The solution of the radial Schrödinger equation (3.58) for l = 0 is locally obtained
as

χ0(r) = A0

{

αk sin(κkr) : r < r0
sin(kr − δ0) : r > r0

(3.74)
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Figure 3.11: (a) s-wave scattering length (3.77) for the box potential (3.73), calcu-
lated for kr0 = 0.5 as a function of s0/~ with s0 being defined through Eq. (3.79).
For large s0/~ ≫ 1, wide plateaus at the value as ≃ r0 are encountered. The
panels (b) and (c) show the scattering wavefunctions (3.74) corresponding to
s0/~ = 10 (green circle) and s0/~ = 10.96 (red star), respectively, with the
associated values as ≃ 0.933483r0 and as ≃ −1.16598r0.

with

αk =
sin(kr0 − δ0)

sin(κkr0)
, (3.75)

κk =
√

k2 + 2mrU0/~2 , (3.76)

and the s-wave scattering length

as = r0 −
1

k
arctan

[

k

κk
tan(κkr0)

]

. (3.77)

In the limit k → 0 we obtain

as
k→0
= r0

(

1− ~

s0
tan

s0
~

)

, (3.78)

where we have introduced by

s0 =
√

2mrU0r0 (3.79)
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the classical action associated with half a round-trip within the potential well at
zero total energy. In the presence of a deep potential well that can accomodate a
large number of bound quantum states, we have s0 ≫ ~. Hence, for a randomly
chosen potential depth U0 which is much larger than ~2/(mrr

2
0) one most probably

finds an s-wave scattering length that is very close to spatial extent of the well,
i.e., as ≃ r0, unless s0/~ is close to an odd multiple of π/2 where the tangent
function features a singularity. This is illustrated in Fig. 3.11(a) which shows
as as a function of s0/~ for kr0 = 0.5. Wide plateaus at the value as ≃ r0 are
encountered for large s0/~ ≫ 1. s-wave scattering lengths that strongly deviate
from this most probable value, in particular those that are negative, occur only
within a very small parameter window about the singularities of the tangent
function.

The panels (b) and (c) of Fig. 3.11 show the scattering wavefunctions (3.74)
that are respectively associated with a positive and a negative value of the s-
wave scattering length. A remarkable difference between these two wavefunctions
occurs in the spatial region 0 < r < r0 within the potential well. While the
wavefunction ψ◦ associated with the positive scattering length as ≃ r0 features
only a marginal probability density within the potential well, the wavefunction
ψ∗ that is associated with the negative scattering length has a large amplitude
within the interval [0, r0]. Translated back to the two-body collision problem
that we originally posed in this section, this would imply that it would generally
be rather unlikely to actually encounter the two atoms very close to each other
during their collision, unless their s-wave scattering length is negative or, more
generally, strongly deviates from the reference value r0.

Certainly, the box potential (3.73) represents a rather simplistic model for
the two-body interaction between alkali atoms, which means that we are not re-
ally in a position to draw the above conclusions concerning two-body collision
processes of alkali atoms. To get a more realistic insight into the general be-
haviour of the s-wave scattering length as a function of the depth of the Van der
Waals potential well, we show in Fig. 3.12 analogous radial profiles of scatter-
ing wavefunctions that were numerically calculated for the Lennard-Jones model
(3.66), namely for the total energy E = ~2k2/(2mr) = 0.0001E0 and the values
A ∈ {500, 510, 520, . . . , 990} of the parameter A that characterizes the effective
depth of the potential well. We see in panel (c) that an s-wave scattering length
of the order of as ≃ 10 r0 is most generally encountered, in which case the associ-
ated wavefunction exhibits a very weak probability for the two atoms to be found
close to each other as compared to this particular length scale. As is also seen in
panel (c), significantly high probabilities for close atom-atom encounters mainly
arise if the s-wave scattering length is negative or much larger than the above
reference scale ∼ 10 r0 for as. These numerical results corroborate our findings
and conclusions that we obtained for the box potential.

The enhancement of the probability for close atom-atom encounters that arises
in the case of a negative s-wave scattering length has a detrimental impact on the
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Figure 3.12: (b,c) Radial profiles of the scattering wavefunctions for the Lennard-
Jones potential (3.66) for the prefactorsA ∈ {500, 510, 520, . . . , 990} and the total
energy E = ~2k2/(2mr) = 0.0001E0. Each line corresponds to a different value
of A. It is coloured in green if the associated s-wave scattering length is positive,
and in red otherwise. Panel (a) shows the Lennard-Jones potential (3.66) for
A = 500 and A = 990.

stability of the ultracold atomic quantum gas insofar as it favours the formation
of diatomic molecules. Owing to the kinetic constraints that are imposed by the
conservation of the total momentum and the total energy of the colliding atom
pair, such molecules cannot result from two-body collision processes. However,
they can be formed in the rarer case of a three-body collision, where three atoms
of the quantum gas happen to be close to each other at a given instant. In that
case, the excess energy that results from the formation of a molecular bound state
between two of the colliding atoms can be taken away by the degree of freedom
that describes the relative motion between this freshly formed diatomic molecule
and the third atom, giving rise to an enhancement of their kinetic energies. Those
two particles are therefore prone to leave the trap and/or to heat up other atoms
via further collisions that occur along their trajectories, which accelerates the
destruction of the quantum gas6.

6In analogy with a supernova, the resulting collapse of the quantum gas and its disintegration
into a number of molecules, metal clusters, and hot atoms is termed bosenova.
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u

r

Figure 3.13: Sketch of the principle of photoassociation spectroscopy. A laser
field, whose photon energy is displayed by the green solid arrow, induces a reso-
nant transition of the ultracold two-body scattering state to a vibrational mode
(indicated by the red line) that is associated with an excited electronic state.
This transition takes place at a specific distance from the origin, namely where
the energy of the excited Born-Oppenheimer curve, as defined with respect to
the dissociation threshold of the diatomic molecule, equals the photon energy of
the laser. Its effectiveness is therefore proportional to the modulus square of the
scattering wavefunction at that distance. A stable molecule can be formed via the
subsequent spontaneous emission of a photon, which gives rise to a de-excitation
of the electronic state (as indicated by the dashed arrow).

Hence, to quantitatively assess whether or not a Bose-Einstein condensate
made of ultracold alkali atoms can be formed and maintained on reasonably long
time scales, it is of vital importance to determine the positive or negative sign
of the s-wave scattering length charaterizing the atomic species under consid-
eration. This task is very hard to do via numerical calculations. Indeed, the
Born-Oppenheimer potential curves that describe the interaction of a pair of
identical alkali atoms in their electronic ground state generally exhibit a large
number of bound molecular states. Those curves therefore have to be computed
with very high numerical precision in order to accurately determine the s-wave
scattering length, namely such that the action integral evaluated at the dissocia-
tion threshold is precise on a scale that is small compared to ~ (see Fig. 3.11 for
the case of the box potential). Especially for heavy alkali atoms such as rubidium,
the nonrelativistic approximation that is inherent in the Schrödinger equation is
not sufficient for this purpose, and one has to resort to methods based on the
Dirac equation in order to solve this problem.

As it stands, s-wave scattering lengths of atomic species are most conve-
niently determined experimentally, namely through ultracold photoassociation

spectroscopy. To this end, a resonant laser transition is induced from the elec-
tronic ground state of the colliding atom pair to an excited state featuring stable
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H 7Li 23Rb 39K 41K 85Rb 87Rb 133Cs
singlet as/aB 0.41 33 66 140 85 2400 90 280
triplet as/aB 1.2 -28 20 -20 65 -370 106 2400

Table 3.1: s-wave scattering lengths of hydrogen and a number of bosonic alkali
isotopes, for both the singlet and the triplet configuration of the valence electrons.
Note the negative values of the triplet s-wave scattering lengths in the case of
the isotopes 7Li, 39K, and 85Rb.

vibrational motion of the two atoms, as is sketched in Fig. 3.13. Owing to the
Franck-Condon principle, this transition takes place at a specific inter-atomic
distance r, namely where the energy of the Born-Oppenheimer potential curve
associated with the excited electronic state, as defined with respect to the disso-
ciation threshold of the diatomic molecule, equals the photon energy of the laser.
Its effectiveness is therefore proportional to the modulus square of the scattering
wavefunction at that distance r. The formation of the diatomic molecule is com-
pleted via the spontaneous emission of a photon, which induces a de-excitation
from the excited to the ground-state Born-Oppenheimer curve, with a finite prob-
ability for the atom pair to end up in a stable vibrational mode. By monitoring
the yield of the thereby associated diatomic molecules as a function of the laser
frequency, one can experimentally trace the radial profile of the scattering wave-
function associated with the dynamics in the relative motion of the colliding atom
pair, which in turn allows one to determine the s-wave scattering length.

Table 3.1 shows a list of the thereby determined s-wave scattering lengths
of hydrogen and a number of bosonic alkali isotopes, for both the singlet and
the triplet configuration of the valence electrons. While the s-wave scattering
length for most of those atomic species is found to be positive, negative values
for as do occur as well, namely specifically for the isotopes 7Li, 39K, and 85Rb.
As was discussed above, those isotopes consequently feature an enhanced rate for
the formation of diatomic molecules via three-body collisions. They are therefore
inappropriate for the creation of a Bose-Einstein condensate that is supposed
to exist over a reasonably long lifetime. Note that this is particularly the case
for one of the atomic species, namely 7Li, that was studied in one of the three
pioneering experiments on Bose-Einstein condensation with ultracold atoms7.
This particular experiment did therefore yield a much less convincing evidence
for the occurrence of Bose-Einstein condensation than the other two pioneering
experiments which were dealing with 87Rb and 23Na atoms.

7C. C. Bradley, C. A. Sackett, J. J. Tollett, and R. G. Hulet, Evidence of Bose-Einstein

Condensation in an Atomic Gas with Attractive Interactions, Phys. Rev. Lett. 75, 1687
(1995).
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Problems

3.6 Show the validity of Eq. (3.45).

3.7 Show that the position representation of the retarded Green function

G0(E) =

(

E − ~
2

2mr

∂2

∂~r2
+ iǫ

)−1

(3.80)

describing the free motion in the relative coordinate (with ǫ→ 0+) is given
by

〈~r|G0(E)|~r ′〉 = − mr

2π~2

eikE |~r−~r ′|

|~r − ~r ′| (3.81)

with kE =
√
2mE/~ for all ~r and ~r ′.

3.8 Show that the expression (3.52) in combination with the Lippmann-Schwin-
ger equation (3.53) represents the unique solution of the Schrödinger equa-
tion (3.49) for an initial wave profile (3.50) which is such that it has no
significant common overlap with the scattering potential at the initial time
t = t0, i.e., we can safely set ψ(~r, t0)U(~r) = 0 for all ~r.

3.9 Show that the the wavefunction ψ~k satisfying the Lippmann-Schwinger
equation (3.53) solves the stationary Schrödinger equation (3.54).

3.10 Show how Eqs. (3.63) and (3.64) result from inserting the expressions (3.57),
(3.60), (3.61), and (3.62) into Eq. (3.55).

3.11 Show that for a scattering potential falling off as u(r) ∼ −r−n with n > 3
for large r → ∞ the scattering phases scale, in the limit k → 0, as δl ∝ k2l+1

for 2l + 3 < n and as δl ∝ kn−2 for 2l + 3 ≥ n.

3.12 Show the validity of Eqs. (3.74–3.77).

3.6 The replacement potential

Having established that the s-wave scattering length as is the only relevant pa-
rameter characterizing two-body collisions in a gas of ultracold neutral atoms, we
can now permit ourselves to replace the rather intricate Van der Waals interac-
tion potential that is associated with the energetically lowest Born-Oppenheimer
curve by a technically simpler model potential which is designed such that it
exhibits the same value for as as the actual two-body interaction. We shall opt
for an effective potential that is globally weak, as weak as possible, such that it
does not exhibit any bound state, contrary to a typical interaction potential of an
alkali atom species. While loss processes due to three-body collisions are thereby
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ruled out within such a model potential, its weakness allows us to employ pertur-
bative approaches that facilitate the task of performing many-body calculations
of the ground state and the excited states of the atomic gas.

More specifically, we shall consider a spherically symmetric effective interac-
tion potential U(~r) ≡ u(|~r|) whose strength is sufficiently small that the Lippmann-
Schwinger equation (3.53) can be solved by a convergent Born series. The latter
is obtained by iteratively inserting the expression (3.53) for the scattering wave-
function on the right-hand side of this equation, yielding

ψ~k(~r) = ei
~k·~r − mr

2π~2

∫

d3r′
eik|~r−~r ′|

|~r − ~r ′|u(r
′)ei

~k·~r ′

(3.82)

+
( mr

2π~2

)2
∫

d3r′
∫

d3r′′
eik|~r−~r ′|

|~r − ~r ′|
eik|~r

′−~r ′′|

|~r ′ − ~r ′′|u(r
′)u(r′′)ei

~k·~r ′′

+O(u3)

up to corrections that scale cubically with the scattering potential. The scattering
amplitude that defines the asymptotic behaviour (3.55) of the wavefunction, given

by ψ~k(~r) ≃ ei
~k·~r − a(θ)eikr/r, is then yielded as

a(θ) =
mr

2π~2

∫

d3r′u(r′)ei(
~k−k~er)·~r ′

(3.83)

−
( mr

2π~2

)2
∫

d3r

∫

d3r′′
u(r′)u(r′′)

|~r ′ − ~r ′′| e
ik(|~r ′−~r ′′|−~er·~r ′)ei

~k·~r ′′

+O(u3)

as a function of the polar angle θ = arccos[~k · ~r/(kr)].
As detailed in the previous section, s-wave scattering is obtained in the low-

energy limit k → 0, yielding the series

as =
mr

2π~2

∫

d3ru(r)−
( mr

2π~2

)2
∫

d3r

∫

d3r′
u(r)u(r′)

|~r − ~r ′| +O(u3) . (3.84)

Defining

g =

∫

u(r)d3r , (3.85)

we obtain in first-order Born approximation, i.e. neglecting the O(u2) contribu-
tions in Eq. (3.84), the expression

as ≃
mrg

2π~2
(3.86)

for the s-wave scattering length of this effective potential. Hence, the scattering
potential has to be conceived such that its integral over space matches

g ≃ 2π~2as
mr

. (3.87)
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It will be very useful and instructive to evaluate leading-order corrections to
this expression. We introduce for this purpose the length scale

ρ = g2
(
∫

d3r

∫

d3r′
u(r)u(r′)

|~r − ~r ′|

)−1

, (3.88)

which characterizes the spatial extent over which this effective potential is defined.
An evaluation of Eq. (3.84) in the second-order Born approximation, neglecting
contributions of the order O(u3), yields

as =
mrg

2π~2
−
(mrg

2π~2

)2 1

ρ
. (3.89)

Hence, the expression (3.87) is to be amended as

g =
2π~2as
mr

+
mrg

2π~2ρ
(3.90)

≃ 2π~2as
mr

(

1 +
as
ρ

+O[(as/ρ)
2]

)

. (3.91)

This clearly indicates that as < ρ is a necessary (though not sufficient) condition
for the Born series to converge, i.e., the effective replacement potential has to be
defined with a characteristic spatial extent ρ that significantly exceeds the s-wave
scattering length of the atomic species under consideration.

While we could, at this stage, further particularize the specific (e.g., gaussian,
or piecewise constant) functional form of U , we content ourselves with requiring
that this replacement potential be sufficiently well-behaved and non-pathological
such that it indeed falls off rapidly for distances exceeding ρ. Consequently, its
Fourier transform coefficients, which are defined by

gk =

∫

u(r)ei
~k·~rd3r , (3.92)

do not feature a significant dependence on k for wave numbers below ρ−1, such
that one can safely approximate gk ≃ g0 = g for 0 < k ≪ ρ−1. Hence, as long
as the wavefunction describing the ultracold gas varies on length scales ξ that
are far greater than the s-wave scattering length of the atomic species under
consideration, i.e. such that the hierarchy of scales as ≪ ρ ≪ ξ can be satisfied
for the spatial extent ρ characterizing the replacement potential, we can use the
effective approximation

U(~r) = gδ(~r) (3.93)

with δ the three-dimensional delta function. In physical terms, the intricate Van
der Waals potential describing the two-body interaction in a gas of atoms can
be safely replaced by a rather structureless contact potential provided this gas
is ultracold and dilute, i.e., provided the atoms move with extremely low kinetic
energies and have a mean interparticle distance that significantly exceeds the
s-wave scattering length characterizing the interaction potential.
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Problems

3.13 Scattering is most conventionally described in terms of the T matrix whose
matrix elements in position space are given by the selfconsistent solution of
the Lippmann-Schwinger equation

Tk(~r, ~r
′) = U(~r)δ(~r − ~r ′)− mrU(~r)

2π~2

∫

d3r′′
eik|~r−~r ′′|

|~r − ~r ′′|Tk(~r
′′, ~r ′) . (3.94)

(a) Show that

ψ~k(~r) = ei
~k·~r − mr

2π~2

∫

d3r′′
eik|~r−~r ′′|

|~r − ~r ′′|

∫

d3r′Tk(~r
′′, ~r ′)ei

~k·~r ′

(3.95)

solves the Lippmann-Schwinger equation (3.53) for the scattering wave-
function.

(b) Consider now a globally weak spherically symmetric scattering poten-
tial U(~r) ≡ u(|~r|). Show that the T matrix fulfills the properties

∫

d3r

∫

d3r′Tk(~r, ~r
′)~r = 0 , (3.96)

∫

d3r

∫

d3r′Tk(~r, ~r
′)~r ′ = 0 . (3.97)

(c) Show that in that case the scattering amplitude, as defined through
Eq. (3.55), is given by the expression

a(θ) =
mr

2π~2

∫

d3r

∫

d3r′Tk(~r, ~r
′) +O(k2) (3.98)

for low wave numbers k.

(d) Using this expression, show that one recovers the k-scaling expressed
in Eq. (3.70), i.e.,

a(θ) = as(1− ikas) +O(k2) , (3.99)

with

as =
mr

2π~2

∫

d3r

∫

d3r′T0(~r, ~r
′) . (3.100)

3.14 Show that the length scale ρ, as defined in Eq. (3.88), can be rewritten as

ρ = 2π2g2
(
∫

g2k
k2
d3k

)−1

(3.101)

in terms of the Fourier coefficients (3.92) of the replacement potential.



Chapter 4

The interacting Bose-Einstein

condensate

4.1 The Gross-Pitaevskii equation

Let us now consider a gaz of N ultracold bosonic atoms that are confined in a
magnetic or optical trapping potential. We assume that the atoms belong to a
single isotopical alkaline species (e.g., 87Rb) and are spin-polarized, i.e., they are
all prepared in the same hyperfine state, which would be a natural outcome of
magnetic trapping as was discussed in Section 3.2. Using the formalism of second
quantization (see also Eq. (1.67)), the Hamiltonian of this quantum system is
written as

Ĥ =

∫

d3rψ̂†(~r)

(

− ~2

2m

∂2

∂~r2
+ V (~r)

)

ψ̂(~r) (4.1)

+
1

2

∫

d3r

∫

d3r′U(~r − ~r ′)ψ̂†(~r)ψ̂†(~r ′)ψ̂(~r ′)ψ̂(~r)

in terms of the bosonic field operators ψ̂(~r), ψ̂†(~r), where m is the mass of the
atoms, V (~r) is the trapping potential at position ~r, and U(~r − ~r ′) describes
the interaction potential between two atoms located at the positions ~r and ~r ′.
Note that this expression (4.2), which is commonly presented as starting point
for the theoretical description of a generic spin-polarized single-species quantum
gas, already involves an a priori approximation insofar as it is based on the
assumption (which is very well justified at low densities) that the interaction
between the atoms in this gas can be described by means of a two-body potential.

At ultralow temperatures of the gas, which imply ultralow kinetic energies
of the atoms, we are entitled to replace the actual Van der Waals interaction
between two atoms by a simpler effective potential which is perturbatively small.
As was discussed in Section 3.6, this replacement potential has to be chosen
such that it reproduces the correct outcome of an ultracold two-body collision

83
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process, the latter being entirely parametrized in terms of the s-wave scattering
length as of the isotopical species under consideration. On length scales that
exceed |as| by far, and on energy scales that are far below the extremal values
of that replacement potential, we can safely approximate the latter by a three-
dimensional Dirac distribution, namely through

U(~r − ~r ′) = gδ(~r − ~r ′) (4.2)

with the prefactor

g =
4π~2as
m

. (4.3)

In the framework of this replacement potential, a positive s-wave scattering
length, as > 0, is thus associated with an effectively repulsive interaction between
the atoms in the gas, while a negative as < 0 would lead to an effective attraction
between them (keeping in mind, however, that the actual Van der Waals interac-
tion potential between the atoms has both attractive and repulsive features). As
was pointed out in Section 3.6, this particular approximation requires a specific
diluteness condition to be valid, namely that the mean interparticle distance in
the gas is much larger than as. Note that one thereby totally neglects the im-
pact of three-body collisions, normally giving rise to the formation of diatomic
molecules in the gas, since the replacement potential does, by construction, not
feature any bound state even if it is globally attractive.

While the high-temperature properties of the gas are only weakly affected by
atom-atom interaction, the presence of the latter has a dramatic impact on ultra-
cold thermal states far below the condensation temperature. In particular, the
ground state |GS〉 of this many-body system is drastically modified with respect
to the case of a noninteracting Bose gas, where it would be simply given by a sin-
gle Fock state having N atoms in the single-particle orbital that corresponds to
the lowest energy eigenstate of the one-body kinetic-plus-potential Hamiltonian.
An exact analytical calculation of the many-body ground state is impossible if in-
teraction is present. However, excellent approximations of the ground state |GS〉
can be obtained through the application of the variational principle, stating that
the mean value 〈GS|Ĥ|GS〉 is stationary with respect to variations of this state
|GS〉 under the constraint 〈GS|GS〉 = 1, owing to the fact that |GS〉 minimizes
the expectation value of Ĥ in the bosonic many-body Hilbert space.

In practice, the variational principle is not applied in the entire many-body
Hilbert space but only within a restricted submanifold thereof. This submanifold
is usually defined such that it allows for a simplified (ideally analytical) treat-
ment of the problem and that its optimal approximation for the ground state
can be reasonably considered to lie rather close to the true ground state |GS〉
in the Hilbert space. In the case of a weakly interacting Bose gas (or, more
precisely, a Bose gas whose effective interaction can be accurately modeled in
terms of a globally weak potential), a convenient choice for this submanifold is
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given by the Hartree ansatz where it is assumed that all atoms of the condensate
share the same single-particle orbital. As pointed out above, this Hartree ansatz
(which is actually identical to a Hartree-Fock approximation for bosons) precisely
corresponds to the ground-state configuration of the ideal Bose gas, and it can
therefore be expected that it yields an excellent approximation of the ground
state also for the weakly interacting gas if the single-particle orbital that hosts
the atoms is optimally chosen.

The Hartree approximation for the ground state can be written as

|GP〉 = |N, 0, 0, . . .〉 (4.4)

in the Fock-space representation that is defined with respect to an orthonor-
mal single-particle basis (φ0, φ1, φ2, . . .) whose first member φ0 corresponds to
the orbital to be optimized. Defining, according to Eq. (2.95), the condensate
wavefunction associated with this Hartree ansatz as

ψ0(~r) =
√
Nφ0(~r) , (4.5)

one has
ψ̂(~r)|N, 0, 0, . . .〉 = ψ0(~r)|N − 1, 0, 0, . . .〉 (4.6)

and can thus straightforwardly evaluate the mean value of the Hamiltonian (4.2)
as

〈GP|Ĥ|GP〉 =

∫

d3r

[

ψ∗
0(~r)

(

− ~
2

2m
∆+ V (~r)

)

ψ0(~r) +
g

2
|ψ0(~r)|4

]

(4.7)

≡ EGP[ψ0]

for large N ≫ 1 for which one can justify the approximation N − 1 ≃ N . The
constraint

∫

|ψ0(~r)|2d3r = N (4.8)

can be incorporated into the optimization problem through the introduction of
a Lagrange multiplier µ, such that one has to find a stationary point of the
expression EGP[ψ0] − µ

(∫

|ψ0(~r)|2d3r −N
)

. Formally, this latter functional is
defined for two a priori independent complex functions ψ0 and ψ∗

0, which upon
solution of the variational problem turn out to be the complex conjugate of one
another. Performing the variational principle with respect to ψ∗

0 , according to

δ

δψ∗
0(~r)

[

EGP[ψ0]− µ

(
∫

|ψ0(~r)|2d3r −N

)]

= 0 , (4.9)

yields the celebrated Gross-Pitaevskii equation1

− ~2

2m
∆ψ0(~r) + V (~r)ψ0(~r) + g|ψ0(~r)|2ψ0(~r) = µψ0(~r) . (4.10)

1E. P. Gross, Structure of a quantized vortex in boson systems, Nuovo Cimento 20, 454
(1961); L. P. Pitaevskii, Vortex Lines in an Imperfect Bose Gas, Sov. Phys. JETP 13, 451
(1961).
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Equation (4.10) can be intepreted as an effective stationary Schrödinger equa-
tion constituted by the various kinetic and potential terms that contribute to
the total energy of an individual atom in the condensate. The nonlinear term
g|ψ0(~r)|2 can be seen as an additional contribution to the effective potential ex-
perienced by an atom, which arises from its interaction with all other atoms of
the condensate. The total energy µ of the atom, appearing on the right-hand
side of Eq. (4.10), represents the chemical potential of the gas, i.e., the energy
that an individual particle has when being added to or extracted from the gas.
It must not be confused with the mean total energy per particle of the gas, given
by EGP[ψ0]/N , but can be obtained from

µ =
d

dN
EGP[ψ0] =

1

N

∫

d3rψ∗
0(~r)

(

− ~2

2m
∆+ V (~r) + g|ψ0(~r)|2

)

ψ0(~r) , (4.11)

where on the right-hand side we use the normalization condition (4.8) as well as
the fact that ψ0 fulfills the Gross-Pitaevskii equation (4.10).

Standard solution techniques for the Schrödinger equation that are based
on the superposition principle cannot be applied here, due to the presence of
the nonlinearity, and exact analytical solutions of Eq. (4.10) can be obtained
only under very specific circumstances. In the presence of a spatially constant
potential V (~r) ≡ V0 the Gross-Pitaevskii equation (4.10) is exactly solved by
the homogeneous condensate wavefunction ψ(~r) =

√
n for all ~r, provided the

system has infinite spatial extension or is defined within a normalization volume
featuring periodic boundaries. Owing to Eq. (4.10), the atom density n is then
related to the chemical potential µ via

gn = µ− V0 . (4.12)

In the case of a repulsive effective interaction between the atoms, g > 0, it can
be straightforwardly shown that this homogeneous wavefunction minimizes both
the kinetic and the interaction energy of the atoms and thus yields the optimal
Hartree approximation for the many-body ground state of the gas.

While periodic boundary conditions cannot be experimentally realized in three
dimensions, it is possible to engineer, via suitably designed blue-detuned laser
field configurations, homogeneous confinement potentials that are delimited by
hard-wall boundaries. Consider the presence of two hard-wall boundaries parallel
to the x − y plane, placed at z = 0 and z = L with L being much larger than
any other characteristic length scale of the system. The condensate wavefunction
then features a z dependence and satisfies the one-dimensional Gross-Pitaevskii
equation

− ~2

2m
ψ′′
0(z) + g|ψ0(z)|2ψ0(z) = (µ− V0)ψ0(z) (4.13)

for 0 < z < L, with the boundary conditions ψ0(0) = ψ0(L) = 0 (assuming that
periodic boundaries still exist along the x and y directions). For large L → ∞
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z/ξ

ψ0

0 10 20 30 40

Figure 4.1: Condensate wavefunction (solid blue line) for a repulsively interacting
Bose gas in the presence of a homogeneous potential and hard-wall boundary
conditions at z = 0 and z = L = 40ξ, with ξ the healing length of the atomic
gas defined according to Eq. (4.15). The dashed black line shows the (sinusoidal)
wavefunction that would be obtained in the absence of interaction, for the same
total population of the gas.

and finite z, with 0 < z ≪ L, Eq. (4.13) is solved by

ψ0(z) =
√
n tanh

(

z√
2ξ

)

(4.14)

with

ξ =
~√

2mgn
, (4.15)

where the asymptotic condensate density n is related to the chemical potential via
Eq. (4.12). The length scale (4.15) is dubbed healing length since it characterizes
the spatial distance within which the presence of any type of perturbation in
the potential configuration is annihilated within the profile of the condensate
wavefunction. Taking into account the second hard-wall boundary condition at
z = L, the condensate wavefunction can be approximately expressed as

ψ0(z) ≃
√
n tanh

(

z√
2ξ

)

tanh

(

L− z√
2ξ

)

, (4.16)

which for ξ ≪ L resembles closely the true condensate wavefunction shown in
Fig. 4.1. Quite intuitively, this particular wavefunction profile represents a com-
promise between minimizing the interaction energy, through flattening and lev-
elling out the density distribution, and minimizing the kinetic energy, through
avoiding very steep slopes of the wavefunction.

The relation (4.12) gives us an indication how to proceed in order to determine
an approximate expression for the condensate density n(~r) in the presence of a
nonuniform potential V (~r) that features a weak spatial dependence. Given the
fact that the chemical potential µ has to be constant throughout the entire spatial
extension of the condensate, we obtain from generalizing Eq. (4.12)

gn(~r) = µ− V (~r) . (4.17)
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This is the Thomas-Fermi approximation. More rigorously, Eq. (4.17) can be
obtained from the Gross-Pitaevskii equation (4.10) through neglecting the kinetic
energy term. This yields the equation

(

V (~r) + g|ψ0(~r)|2
)

ψ0(~r) = µψ0(~r) (4.18)

which is straightforwardly solved as

ψ0(~r) =

{ √

1
g
(µ− V (~r)) : µ > V (~r)

0 : otherwise
. (4.19)

Quite intuitively, as is also shown in Fig. 4.2, the density profile n(~r) resulting
from this expression is such that it gives rise to a spatially homogeneous effective
potential energy V (~r) + gn(~r) each atom of the condensate experiences (pretty
much as for a lake in which the water molecules redistribute themselves such as
to flatten the surface and thereby minimize the total potential energy).

The chemical potential in the above expression (4.19) is determined from the
normalization condition (4.8)

∫

d3r|ψ0(~r)|2 = N . For the case of an anisotropic
harmonic trapping potential

V (~r) =

3
∑

j=1

1

2
mω2

j r
2
j (4.20)

this calculation yields

µ =

(

15

8π
Ng

)2/5(
mω̄2

2

)3/5

, (4.21)

where
ω̄ = (ω1ω2ω3)

1/3 (4.22)

represents the geometric average of the oscillation frequencies ωj characterizing
the trapping potential. Using the relation (4.3) between the interaction strength
g and the s-wave scattering length as, and introducing the mean oscillator length

ā =

√

~

mω̄
, (4.23)

Eq. (4.21) can be rewritten as

µ =
1

2
(15Nas/ā)

2/5
~ω̄ ≡ µ(N) . (4.24)

With Eq. (4.11) the total energy contained in the condensate is then yielded as

EGP =

∫ N

0

µ(N ′)dN ′ =
5

7
Nµ(N) ≃ 1.055N (Nas/ā)

2/5
~ω̄ . (4.25)
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Figure 4.2: Thomas-Fermi approximation for the case of an isotropic three-
dimensional harmonic oscillator, characterized by the oscillator length ā. Panels
(a) and (b) respectively show, for Nas/ā = 10, the effective potential energy
V + gn (a) as well as the condensate wavefunction (b) as a function of one of
the three coordinates x, with the other two coordinates y, z being set to zero.
Panel (c) shows the chemical potential as a function of Nas/ā. Thin black curves
correspond to the noninteracting case as = 0, thick dashed red curves result from
the Thomas-Fermi approximation, and blue curves show the behaviours that are
obtained from an exact numerical solution of the Gross-Pitaevskii equation (4.10).

Quite intriguingly, EGP features much weaker a scaling with N , namely ∝ N7/5,
than what would have been expected if the orbital φ0 hosting the atoms of the
condensate was not allowed to vary as a function of N (in which case two-body
interaction would naturally yield the scaling E ∝ N2).

Figure 4.2 clearly shows that the Thomas-Fermi approximation agrees very
well with the exact numerical solution of the Gross-Pitaevskii equation (4.10)
for large Nas/ā ≫ 1. Significant deviations in the condensate wavefunction, as
can be seen in Fig. 4.2(b), occur only in the tails of the wavefunction, where the
atom density is comparatively weak and the kinetic energy term in the Gross-
Pitaevskii equation can thus no longer be neglected with respect to the interaction
energy term. A more precise criterion for the validity of the Thomas-Fermi
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approximation can be expressed in terms of the local healing length

ξ(~r) =
~

√

2mgn(~r)
, (4.26)

generalizing the concept of the healing length (4.15) for the case of inhomogeneous
condensates. If the inequality ξ(~r) ≪ aj with aj =

√

~/(mωj) holds for all
j = 1, 2, 3, then Eq. (4.18) represents a valid local approxmation of Eq. (4.10).
Identifying in a very approximate manner the mean atom density in the harmonic
trap with n ∼ N/ā3, and using the relation (4.3), we infer the scaling

ξ

ā
∼
√

ā

8πNas
(4.27)

for the mean healing length ξ of the condensate, from which follows that Nas ≫ ā
is indeed a necessary and sufficient condition for the validity of the Thomas-Fermi
approximation provided the trap is not particularly anisotropic.

In the regime of moderate or weak interaction effects, Nas . ā, where the
Thomas-Fermi approximation fails, the ground-state properties of the interac-
tiong Bose-Einstein condensate in a harmonic trap can be approximately de-
termined by a complementary approach that amounts to further pursuing the
application of the variational principle beyond the level of the general Hartree
ansatz. More precisely, we not only assume in this approach that all atoms share
the same single-particle orbital but also specify the generic profile that this or-
bital is supposed to exhibit. Specifically, in view of the fact that in the absence of
interaction the ground-state wavefunction acquires a Gaussian profile in parabolic
confinement potentials, the condensate wavefunction will be chosen as

ψ0(~r) =
√
N

3
∏

j=1

1
√√

πbj
exp

(

−
r2j
2b2j

)

≡ ψ
(b1,b2,b3)
0 (~r) , (4.28)

with characteristic (positive) length-scale parameters b1, b2, b3 that have to be

adapted such that the energy expectation value associated with ψ
(b1,b2,b3)
0 is min-

imized. Inserting the trial function (4.28) into Eq. (4.7) yields

EGP

[

ψ
(b1,b2,b3)
0

]

=
N

4

3
∑

j=1

~ωj

(

a2j
b2j

+
b2j
a2j

)

+
N2

2

g
√
2π

3
b1b2b3

(4.29)

for the latter, with

aj =

√

~

mωj
(4.30)

the oscillator length associated with the frequency ωj. Clearly, the expression
(4.29) diverges for both bj → 0 and bj → ∞ for all j = 1, 2, 3 and must thus, in
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the case of a positive interaction parameter g > 0, exhibit a global minimum for
a set of finite values for b1, b2, b3. Setting

∂

∂bj
EGP

[

ψ
(b1,b2,b3)
0

]

= 0 (4.31)

for this minimum, this set of values has to satisfy the equations

~ωj

(

b2j
a2j

−
a2j
b2j

)

=
Ng

√
2π

3
b1b2b3

(4.32)

for j = 1, 2, 3.
In the regime of very weak interaction, the above equations are approximately

solved via bj ≃ aj , with corrections to this approximation scaling linearly with
Ng. Inserting this approximation into Eq. (4.29) yields

EGP ≃ N

2

3
∑

j=1

~ωj +
N2

2

g

(
√
2πā)3

+O
(

(Ng)2
)

(4.33)

for the total energy of the condensate, with ā = (a1a2a3)
1/3. As expected, a

quadratic scaling of the interaction energy with the particle number is obtained,
given the fact that the ground-state wavefunction is not appreciably modified in
this perturbative regime. The chemical potential of the condensate can then be
derived according to

µ =
dEGP

dN
≃ 1

2

3
∑

j=1

~ωj +
Ng

(
√
2πā)3

+O
(

(Ng)2
)

. (4.34)

Equations (4.32) can also be approximately solved in the opposite regime of
very strong interaction, corresponding to the condition Nas ≫ ā, namely through

~ωj

b2j
a2j

=
Ng

√
2π

3
b1b2b3

+ ~ωj

a2j
b2j

(4.35)

≃ Ng
√
2π

3
b1b2b3

+O
(

(Ng)−1
)

,

where the ratio a2j/b
2
j appearing on the right-hand side of Eq. (4.35) can be

recursively determined from the inverse of that right-hand side. This yields

bj =

(

2

π

)1/10(
Nas
ā

)1/5
ω̄

ωj

ā (4.36)

with Eq. (4.3), from which we obtain the total energy

EGP =
5

4

(

2

π

)1/10(
Nas
ā

)2/5

N~ω̄ ≃ 1.142N(Nas/ā)
2/5

~ω̄ . (4.37)
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Figure 4.3: Variational energy (4.29) evaluated as a function of b = b1 = b2 = b3
for a three-dimensional isotropic harmonic oscillator with the frequency ω̄ and
the oscillator length ā =

√

~/(mω). A local minimum of the energy, which is
also a global minimum for positive as, is encountered for Nas/ā > −0.67. Below
this critical value of the interaction strength, the variational approach does not
yield an optimal Gaussian profile for the condensate, implying that the latter will
inevitably be subject to collapse and subsequent disintegration.

Remarkably, the same scaling ∝ N7/5 with the particle number is thereby ob-
tained as with the Thomas-Fermi approximation, and the comparison with the
total energy expression (4.25) that the latter yielded reveals only a tiny difference
in the numerical prefactor. This represents a complenetary confirmation of the
validity of the Thomas-Fermi approximation in the strongly interacting regime.
It also underlines the robustness of the variational approach which yields very
good approximations even for parameter regimes that strongly deviate from the
noninteracting case.

The variational approach can also be applied for negative interaction param-
eters g < 0, in which case the Gaussian trial wavefunction would undergo nar-
rowing instead of widening. However, no local minimum exists beyond a certain
critial attractive interaction strength, corresponding to Nas/ā ≃ −0.67 for the
case of an isotropic harmonic oscillator as can be seen in Fig. 4.3. Physically,
this implies that for strong effective attraction cooling of the atomic gas does
not lead to the formation of a stable condensate. Instead, the atomic cloud will
auto-collapse due to self-attraction, giving rise to an enhanced density, and, in
the course of this process, undergo disintegration via three-body collisions as was
discussed at the end of Section 3.5.
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Problems

4.1 Consider a Bose-Einstein condensate within a D-dimensional trapping po-
tential V (r) for D = 1 or 2, with r ≡ (r1, . . . , rD), where the presence of
a very tight isotropic harmonic confinement with frequency ω⊥ is assumed
in the remaining 3−D transverse dimensions. The Hartree ansatz for the
ground state can then be performed for the condensate wavefunction

ψ0(~r) =
√
Nψ0(r)

3
∏

j=D+1

χ⊥(rj) (4.38)

with χ⊥(rj) the normalized noninteracting ground-mode eigenfunction along
the rj coordinate. Show that this Hartree ansatz yields a D-dimensional
Gross-Pitaevskii equation

− ~2

2m

∂2

∂r2
ψ0(r) + V (r)ψ0(r) + gD|ψ0(r)|2ψ0(r) = µψ0(r) (4.39)

with

g1 = 2~ω⊥as , (4.40)

g2 =
√
8π~ω⊥a⊥as (4.41)

for D = 1 and 2, respectively, with a⊥ =
√

~/(mω⊥).

4.2 Show that Eq. (4.14) with gn = µ − V0 represents the solution of the one-
dimensional Gross-Pitaevskii equation (4.13) in the presence of the bound-
ary conditions ψ0(0) = 0 and ψ0(z) →

√
n for z → ∞.

4.3 Show that in the case of an attractive interaction, g < 0, the real-valued
square-integrable solutions of the one-dimensional Gross-Pitaevskii equa-
tion (4.13) with µ < V0 are given by solitonic wavefunctions of the form

ψ0(z) =
±
√
2n

cosh
[

(z − z0)/ξ̃
] (4.42)

for arbitrary z0, with n = (µ− V0)/g > 0 and ξ̃ = ~/
√−2mgn.

4.4 Consider the D-dimensional Gross-Pitaevskii equation

− ~
2

2m

∂2

∂r2
ψ0(r) + V (r)ψ0(r) + gD|ψ0(r)|2ψ0(r) = µψ0(r) (4.43)

for D = 1, 2, or 3, with gD > 0 and g3 = g. Show that in the presence of
the anisotropic harmonic trapping potential

V (r) =

D
∑

j=1

1

2
mω2

j r
2
j (4.44)
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the Thomas-Fermi approximation yields the scalings

µ =

(

3

4
Ng1

)2/3(
1

2
mω̄2

)1/3

, (4.45)

µ =

√

1

π
Ng2mω̄2 , (4.46)

µ =

(

15

8π
Ng

)2/5(
1

2
mω̄2

)3/5

(4.47)

for D = 1, 2, and 3, respectively, with ω̄ = (ω1 · · ·ωD)
1/D.

4.5 Consider a confinement potential that is defined in terms of a characteristic
length scale a, such that it can be expressed as

V (~r) =
~2

2ma2
φ(~r/a) (4.48)

with φ(~ρ) a generic dimensionless trapping profile (e.g., φ(~ρ) = ρ2). Show
that the kinetic term in the Gross-Pitaevskii equation (4.10) is of minor
importance with respect to the interaction term if the inequality ξ(~r) ≪ a
holds for the local healing length (4.26).

4.6 Consider a Bose-Einstein condensate with N atoms, characterized by the s-
wave scattering length as, which is confined in a three-dimensional isotropic
harmonic oscillator potential characterized by the oscillator length a. Cal-
culate the smallest negative value of Nas/a for which the variational energy
(4.29) exhibits a local minimum as a function of the parameter b (= bj for
all j = 1, 2, 3).

4.7 Show that for harmonic confinement potentials in one spatial dimension the
variational approach predicts the existence of stable Bose-Einstein conden-
sates even in the presence of strongly attractive interaction.



Appendix A

Solutions to the problems

Problems of Chapter 1

1.1 In the case of a purely kinetic N -particle Hamiltonian, the classical phase
space volume at the total energy E is given by

Ω(E,N) =

∫

V

d3r1 · · ·
∫

V

d3rN

∫

d3p1 · · ·
∫

d3pNδ

(

E −
N
∑

i=1

p2i
2m

)

,

(A.1)
where V represents the volume in which the particles are confined. The
integration over the position coordinates yields V N . For the momentum
integrals we introduce hyperspherical coordinates defined with respect to
the supervector

P ≡ (p1, . . . ,pN) = (px1, py1, pz1, . . . , pxN , pyN , pzN) ∈ R
3N . (A.2)

This yields

Ω(E,N) = V NΩ3N−1

∫ ∞

0

P 3N−1δ

(

E − P 2

2m

)

dP , (A.3)

where Ω3N−1 denote the hypersurface of the unit sphere in 3N dimensions.
The latter can be determined through the calculation of a 3N dimensional
Gaussian integral, namely according to

π3N/2 =

∫

e−P 2

d3NP = Ω3N−1

∫ ∞

0

P 3N−1e−P 2

dP

=
Ω3N−1

2

∫ ∞

0

u3N/2−1e−udu =
Ω3N−1

2
Γ

(

3

2
N

)

, (A.4)

where Γ(x) =
∫∞
0
tx−1e−tdt is the Gamma function. The radial integral

within Eq. (A.3) is obtained as
∫ ∞

0

P 3N−1δ

(

E − P 2

2m

)

dP = m(2mE)3N/2−1 . (A.5)
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This finally yields

Ω(E,N) =
V N (2πmE)

3
2
N

Γ
(

3
2
N
)

E
. (A.6)

1.2 We start by noting that

1

π
Re

∫ ∞

0

ei(x+iǫ)tdt =
1

π
Re

[

1

ǫ− ix

]

=
ǫ/π

ǫ2 + x2
(A.7)

represents a regularization of Dirac’s delta function in the limit ǫ → 0+,
which would work for a reasonably large class of test functions (namely
those that do not diverge at infinity). The density of states (1.19) can
therefore be expressed as

g(E,N) =
∞
∑

n=0

δ(E − En) = Tr
[

δ(E − Ĥ)
]

= Tr lim
ǫ→0+

1

π
Re

∫ ∞

0

exp
[

i(E − Ĥ + iǫ)t
]

dt . (A.8)

The trace is now carried out in the configurational eigenbasis of the position
space. Defining the eigenket |R〉 of the supervector

R ≡ (r1, . . . , rN) = (x1, y1, z1, . . . , xN , yN , zN) ∈ R
3N (A.9)

with the property 〈R|R′〉 = δ(R−R′) for all R,R′ ∈ R
3N , we can express

Eq. (A.8) as

g(E,N) = lim
ǫ→0+

1

π
Re

∫

d3NR

∫ ∞

0

dt 〈R| exp[i(E − Ĥ + iǫ)t]|R〉 . (A.10)

We now use the fact that the Hamiltonian, as defined through Eq. (1.9),
can be decomposed as Ĥ = T̂ + V̂ where T̂ denotes its kinetic part and V̂
comprises the external confinement potential as well as the internal inter-
action energy. The latter is diagonal in the above position eigenbasis and
exhibits the matrix elements

〈R|V̂ |R′〉 =
(

N
∑

i=1

V (ri) +
1

2

N
∑

i 6=j=1

U(ri − rj)

)

δ(R−R′) . (A.11)

The kinetic operator T̂ would be diagonal in the complementary basis of
momentum eigenstates |P〉 whose normalized wavefunctions are given by

〈R|P〉 = 1
√
2π~

3N
exp

(

i

~
P ·R

)

. (A.12)
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Its matrix elements within this momentum eigenbasis read

〈P|T̂ |P′〉 = δ(P−P′)
N
∑

i=1

p2i
2m

. (A.13)

To make use of those two expressions (A.11) and (A.13), we employ the
Baker-Campbell-Hausdorff relation

exp[−i(T̂ + V̂ )t] ≃ exp(−iT̂ t) exp(−iV̂ t) exp
(

t2

2
[T̂ , V̂ ]

)

, (A.14)

where leading corrections to the above approximation involve higher-order
commutators, namely between T̂ − V̂ and the commutator [T̂ , V̂ ]. The
latter involves spatial derivatives of the confinement and the interaction
potential, which are accompanied by a prefactor −i~. Considering the
formal limit ~ → 0, we consequently neglect the last exponential function
on the right-hand side of Eq. (A.14) as well as further corrections to the
above approximation. Using Eqs. (A.11)–(A.13) we then obtain

〈R| exp(−iĤt)|R〉 ≃ 〈R| exp(−iT̂ t) exp(−iV̂ t)|R〉

=

∫

d3NP 〈R|P〉
∫

d3NP ′ 〈P| exp(−iT̂ t)|P′〉

×
∫

d3NR′ 〈P′|R′〉〈R′| exp(−iV̂ t)|R〉

=

∫

d3NP

(2π~)3N
exp [−iH(r1,p1, . . . , rN ,pN)t](A.15)

where H denotes here the classical equivalent (1.1) of the quantum many-
body Hamiltonian Ĥ . Inserting this expression into Eq. (A.10) and carrying
out the resulting integral over t using again Eq. (A.7), we finally obtain

g(E,N) =
1

(2π~)3N

∫

d3NR

∫

d3NP δ [E −H(r1,p1, . . . , rN ,pN)] .

(A.16)

1.3 Using the expression

g(E) =
∑

n

δ(E − En) = C(N)E
3
2
N−1 , (A.17)

for the density of states, we obtain according to Eq. (1.51) the partition
function

Z = Tr[e−βĤ ] =
∑

n

e−βEn =

∫

dEg(E)e−βE = C(N)β− 3
2
NΓ

(

3

2
N

)

(A.18)



98 APPENDIX A. SOLUTIONS TO THE PROBLEMS

where Γ(x) =
∫∞
0
tx−1e−tdt denotes the Gamma function. The statistical

averages of the expectation values of Ĥ and Ĥ2 are then evaluated within
the canonical ensemble (1.50) as

〈Ĥ〉 = Tr[Ĥρ̂] =
1

Z
Tr[Ĥe−βĤ ] = − 1

Z

∂

∂β
Z = − ∂

∂β
lnZ =

3

2

N

β
(A.19)

and

〈Ĥ2〉 = Tr[Ĥ2ρ̂] =
1

Z
Tr[Ĥ2e−βĤ ] =

1

Z

∂2

∂β2
Z =

3
2
N
(

3
2
N + 1

)

β2
, (A.20)

respectively. This straightforwardly yields

〈Ĥ2〉 =
(

1 +
2

3N

)

〈Ĥ〉
2

, (A.21)

from which follows Eq. (1.53).

Problems of Chapter 2

2.1 The derivation carried out in Section 2.2 can be straightforwardly adapted
to the case of noninteracting fermionic atoms. The key difference with
respect to the bosonic case is that two or more fermions cannot occupy the
same one-body state, which implies that the occupancies nk of the single-
particle basis states φk are restricted to the binary numbers 0 end 1. The
partial partition function associated with this state is then evaluated as

Yk =

1
∑

nk=0

e−β(Ek−µ)nk = 1 + e−β(Ek−µ) , (A.22)

instead of the expression (2.24) referring to bosons. It is straightforward
to show that all other calculation steps that are done in Section 2.2 are
identical to the bosonic case, notably including Eq. (2.30) where summa-
tions over non-negative occupancies are to be replaced by summations over
binary numbers. As in the bosonic case, we then end up with

〈n̂k〉 = − 1

β

∂

∂Ek

lnYk , (A.23)

which straightforwardly yields Eq. (2.35).

2.2 Denoting by n̂k = â†kâk the occupancy operator on the single-particle eigen-
state φk, we evaluate in analogy with Eqs. (2.30) and (2.31)

〈n̂2
k〉 = Tr[ρ̂n̂2

k] =
1

Yk

(

− 1

β

∂

∂Ek

)2

Yk =
eβ(Ek−µ) + 1

(eβ(Ek−µ) − 1)
2 . (A.24)
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Since we have 〈n̂kn̂k′〉 = 〈n̂k〉 〈n̂k′〉 for k 6= k′, with 〈n̂k〉 given by Eq. (2.31),
we can write

〈n̂kn̂k′〉 = 〈n̂k〉 〈n̂k′〉+ δkk′
(

〈n̂k〉
2
+ 〈n̂k〉

)

(A.25)

for all k, k′ ∈ N0. We thereby obtain

(∆N)2 = 〈N̂2〉 − 〈N̂〉
2

=
∞
∑

k,k′=0

(

〈n̂kn̂k′〉 − 〈n̂k〉 〈n̂k′〉
)

= 〈N̂〉+
∞
∑

k=0

〈n̂k〉
2

(A.26)

for the variance associated with the statistical mean value of the particle
number operator.

The relative fluctuations of the particle number operator with respect to

its mean value N = 〈N̂〉 can then be quantified in terms of the normalized
standard deviation

∆N

N
=

√

√

√

√

1

N
+

1

N2

∞
∑

k=0

〈n̂k〉
2
. (A.27)

They are negligibly small in the thermodynamic limit N → ∞ provided we
have ∞

∑

k=0

〈n̂k〉
2 ≪ N2 (A.28)

in that case. This latter condition is generally satisfied at finite values for
the temperature of the particle reservoir, where we can safely assume that
approaching the thermodynamic limit via suitable tuning of the reservoir’s
chemical potential leads to the population of a rather large number of single-
particle eigenstates of the system in a rather smooth manner, such that we
have 〈n̂k〉 ≪ N for all k. It breaks down, however, below the Bose-Einstein
condensation temperature, where the single-particle ground state of the
system acquires a macroscopically large population 〈n̂0〉 ∼ N . In that latter
case, the particle number fluctuations become become macroscopically large
as well, i.e., we have ∆N ∼ N according to Eq. (A.27), and the equivalence
between the canonical and the grand canonical ensemble can therefore no
longer be taken for granted.

2.3 (a) Defining δ = − ln z with the property 0 < δ ≪ 1, we rewrite

gp(z) = gp(e
−δ) =

∞
∑

l=1

e−lδ

lp
= δp−1

∞
∑

l=1

e−lδ

(lδ)p
δ . (A.29)
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The last expression on the right-hand side of this equation represents
a Riemann sum approximation of an integral, which yields

∞
∑

l=1

e−lδ

(lδ)p
δ ≃

∫ ∞

0

e−x

xp
dx = Γ(1− p) (A.30)

with

Γ(x) =

∫ ∞

0

tx−1e−tdt (A.31)

the Gamma function. We therefore have

gp(z) ≃ Γ(1− p)(− ln z)p−1 (A.32)

in leading order in − ln(z) ≃ 1 − z. Using Γ(1/2) =
√
π we obtain

Eq. (2.61) for p = 1/2.

Leading-order corrections to the approximate expression (A.32) can
be evaluated by examining in more detail the Riemann sum approx-
imation (A.30) near the lower integration bound x → 0 where the
integrand diverges. To this end, we define the function

γp(δ) = lim
N→∞

(

N
∑

l=1

e−lδ

lp
−
∫ N

1

e−lδ

lp
dl

)

. (A.33)

Its limit for δ → 0 exists and is given by Euler’s generalized constant

γp = lim
N→∞

(

N
∑

l=1

1

lp
−
∫ N

1

1

lp
dl

)

, (A.34)

which is evaluated as γ1/2 ≃ 0.5396 for p = 1/2. Noting that

∫ 1

0

e−lδ

lp
dl =

1

1− p
+O(δ) (A.35)

for 0 < p < 1, we obtain

gp(e
−δ) =

∫ ∞

0

e−lδ

lp
dl − 1

1− p
+ γp +O(δ) (A.36)

and hence, using Eq. (A.30),

gp(z) = Γ(1− p)(− ln z)p−1 − 1

1− p
+ γp +O(− ln z) . (A.37)
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(b) From Eq. (2.46) we infer

λT n̄ = g1/2(e
βµ) (A.38)

forD = 1. As the thermal de Broglie wavelength λT , defined according
to Eq. (2.44), diverges for T → 0, the solution of Eq. (A.38) in the limit
of low temperatures implies a diverging Bose function g1/2(e

βµ) → ∞
which is obtained for an argument eβµ that approaches unity and thus
corresponds to a vanishingly small exponent βµ → 0−. We therefore
can make use of the approximate evaluation (2.61) yielding

g1/2(z) ≃
√

π

1− eβµ
≃
√

π

−βµ . (A.39)

Solving Eq. (A.38) for µ in combination with this approximate expres-
sion (A.39) yields then

µ ≃ −πkBT
λ2T n̄

2
(A.40)

from which follows Eq. (2.62).

2.4 (a) For 0 < z < 1 we have the convergent Taylor series expansion

ln(1− z) = −
∞
∑

l=1

zl

l
= −z − z2

2
− z3

3
− . . . (A.41)

which is identical with −g1(z) according to the definition (2.43) of the
Bose function.

(b) From Eq. (2.46) we infer, for D = 2, the relation g1(e
βµ) = λ2T n̄.

Inserting the explicit functional form (2.63) for g1(z) into this equation
yields

ln(1− eβµ) = −λ2T n̄ , (A.42)

which is readily solved for µ according to

µ = kBT ln
(

1− e−λ2
T
n̄
)

. (A.43)

Inserting the expression (2.44) for the thermal de Broglie wavelength
yields Eq. (2.64).

2.5 With Eq. (2.43) we calculate

g′p(z) =
d

dz

∞
∑

l=1

zl

lp
=

∞
∑

l=1

lzl−1

lp
=

1

z

∞
∑

l=1

zl

lp−1
=
gp−1(z)

z
. (A.44)
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2.6 (a) For T < Tc we have from Eq. (2.67) E = χT p+1 with a prefactor χ that
depends on N and V but is independent of T . Hence, the derivative
with respect to T at fixed N and V yields

∂E

∂T
= (p+ 1)

E

T
= (p+ 1)pkB

(

kBT

E0

)p

ζ(p+ 1) (A.45)

from which follows the low-temperature behaviour of the specific heat
(2.69).

The evaluation of the high-temperature behaviour of cV is slightly
more complicated as it involves an implicit derivative. Deriving the
expression (2.58) with respect to temperature for T > Tc yields

∂E

∂T
= (p+ 1)pkB

(

kBT

E0

)p

gp+1(e
βµ)

+pkBT

(

kBT

E0

)p

g′p+1(e
βµ)

d

dT
eβµ
∣

∣

∣

∣

N,V

, (A.46)

where for the last term on the right-hand side of this equation we have
to take into account the fact that µ implicitly depends on T and N ,
as displayed in Fig. 2.1(d) and expressed via Eq. (2.46). While we
are unable to obtain from that latter equation an explicit expression
for µ(T,N) in terms of known functions (except for the case p = 1,
see Eq. (2.64)), the derivative expression required in Eq. (A.46) can
nevertheless be yielded by deriving both sides of Eq. (2.66) with respect
to T at fixed N and V :

0 =
p

T

(

kBT

E0

)p

gp(e
βµ) +

(

kBT

E0

)p

g′p(e
βµ)

d

dT
eβµ
∣

∣

∣

∣

N,V

. (A.47)

We therefore determine

d

dT
eβµ
∣

∣

∣

∣

N,V

= − p

T

gp(e
βµ)

g′p(e
βµ)

. (A.48)

Using g′p+1(z)/g
′
p(z) = gp(z)/gp−1(z), which follows from the property

(2.65), and (kBT/E0)
p = N/gp(e

βµ), which follows from Eq. (2.66) for
T > Tc, we can rewrite Eq. (A.46) as

∂E

∂T
= NpkB

(

(p+ 1)
gp+1(e

βµ)

gp(eβµ)
− p

gp(e
βµ)

gp−1(eβµ)

)

. (A.49)

This then yields the high-temperature behaviour of cV .



103

(b) Let us first recall, as is also displayed in Fig. 2.1(d), that a monotonous
increase of the temperature from Tc to ∞ at fixed particle number N
implies a monotonous decrease of the chemical potential from 0 to
−∞ which is such that we have the limits βµ → 0 for T → Tc and
βµ→ −∞ for T → ∞. The argument eβµ of the Bose function there-
fore approaches unity close to the critical temperature. For p ≤ 2 this
implies that the second term on the right-hand side of Eq. (A.49) van-
ishes there, owing to the diverging term gp−1(e

βµ) in the denominator.
We then have

lim
T→Tc

∂E

∂T
= NkBp(p+ 1)

ζ(p+ 1)

ζ(p)
, (A.50)

independently of whether the critical temperature is approached from
above, via Eq. (A.49), or from below, via Eq. (A.45). For p > 2, on
the other hand, gp−1(z) approaches the finite value ζ(p−1) in the limit
z → 1−. The specific heat therefore features a discontinuity at Tc in
that case, and drops by an amount

lim
T→Tc+

cV − lim
T→Tc−

cV = −kB
p2ζ(p)

ζ(p− 1)
(A.51)

when the temperature is increased across Tc.

(c) In the high-temperature limit T → ∞, we have z = eβµ → 0 and
can therefore justify the approximation gp(z) ≃ z + z2/2p + O(z3). A
Taylor series expansion up to linear order in z yields

(p+ 1)
gp+1(z)

gp(z)
− p

gp(z)

gp−1(z)
≃ 1 +

p− 1

2p+1
z +O(z2) . (A.52)

Solving Eq. (2.66) in leading order in z according to z ≃ N [E0/(kBT )]
p

allows us then to expand Eq. (A.49) in the high-temperature limit as

∂E

∂T
≃ NpkB

[

1 +
p− 1

2p+1
N

(

E0

kBT

)p]

(A.53)

up to corrections that scale quadratically with z. Division by N yields
Eq. (2.70).

2.7 We start by noting that (enx − 1)−1 diverges as 1/(nx) for x → 0 at finite
n. Let us therefore first rewrite

∞
∑

n=1

1

enx − 1
= lim

N→∞

(

N
∑

n=1

1

nx
+

N
∑

n=1

f(nx)

)

(A.54)
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where we define

f(ξ) =
1

eξ − 1
− 1

ξ
. (A.55)

This latter function is regular at the origin, with the limit f(ξ → 0) =
−1/2. We can therefore approximate the sum over f(nx) by an integration
according to

N
∑

n=1

f(nx) ≃
∫ N+1/2

1/2

f(nx)dn =
1

x

∫ (N+1/2)x

x/2

f(ξ)dξ . (A.56)

This approximation is valid up to corrections that scale linearly in x, noting
that we have here an implementation of the so-called midpoint rule for
the evaluation of the integral on the right-hand side of Eq. (A.56) via a
Riemann sum. Using

∫

ξ−1dξ = ln ξ and
∫

(eξ − 1)−1dξ = ln(1 − e−ξ) (see
also Eq. (2.63) for this latter identity), we calculate

∫ (N+1/2)x

x/2

f(ξ)dξ = ln

(

1− e−(N+1/2)x

1− e−x/2

)

− ln(2N + 1) . (A.57)

Insertion into Eq. (A.54) yields, after performing the limit N → ∞,

∞
∑

n=1

1

enx − 1
=
γ

x
− 1

x
ln
[

2(1− e−x/2)
]

+O(x) (A.58)

with the Euler-Mascheroni constant (2.91). Using the Taylor expansions of
the exponential function and the logarithm, we obtain

ln
[

2(1− e−x/2)
]

= ln x− x/4 +O(x2) , (A.59)

from which follows Eq. (2.90).

2.8 Let us first consider the case T > Tc. We infer from Eqs. (2.100) and (2.101)

n(ρ) =
1

(2π~)3

∫

d3p
eip·ρ/~

eβ[p2/(2m)−µ] − 1
. (A.60)

With the help of the geometric series (2.41) we calculate

n(ρ) =
1

λ3T

∞
∑

l=1

elβµ

l3/2
e−πρ2/(lλ2

T
) . (A.61)

For large ρ/λT → ∞ we are entitled to approximate the sum by an integral,
yielding

n(ρ) ≃ 1

λ3T

∫ ∞

0

ef(l)

l3/2
dl (A.62)
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with

f(l) = lβµ− πρ2

lλ2T
. (A.63)

Indeed, this function f exhibits a global maximum at

l0 =

√

π

−βµ
ρ

λT
(A.64)

where it is evaluated as

f(l0) = −2
√

−πβµ ρ

λT
(A.65)

and exhibits the curvature

f ′′(l0) =
2βµ

ρ/λT

√

−βµ
π

. (A.66)

We thus have l0 → ∞ and f ′′(l0) → 0 in the limit ρ/λT → ∞, which implies
that near this global maximum of f the approximation of the sum by an
integration is very well justified in this limit.

We now perform the change of integration variable

l 7→ u =
ρ

λT

√

π

l
−
√

−βµl , (A.67)

which is inverted through

l =
4πr2/λ2T

(√

u2 + 4
√
−πβµ ρ

λT
+ u
)2 (A.68)

With this expression for l we straightforwardly calculate

f(l) = lβµ− πρ2

lλ2T
= −2

√

−πβµ ρ

λT
− u2 (A.69)

as well as

l−3/2dl = − λT√
πr



1 +
u

√

u2 +
√
−πβµ ρ

λT



 du . (A.70)

Using
∫∞
−∞ u(u2 +

√
−πβµρ/λT )−1/2e−u2

du = 0, we then evaluate

∫ ∞

0

l−3/2ef(l)dl =
λT
r

exp

(

−2
√

−πβµ ρ

λT

)

, (A.71)
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from which, with Eq. (A.62), follows Eq. (2.103).

The key approximation (A.62), consisting in the replacement of the sum
(A.61) by an integral, can be justified also in the limit βµ→ 0, correspond-
ing to the case T < Tc, even though in that case f does no longer exhibit a
global maximum. We therefore have λ−3

T

∑∞
l=1 l

−3/2e−πρ2/(lλ2
T ) ≃ λ−2

T ρ−1 for
ρ≫ λT . The validity of Eq. (2.103) can thus be shown also for temperatures
below the critical temperature.

Problems of Chapter 3

3.1 The starting point of this calculation is the general nonrelativistic expres-
sion

~j(~r, t) =
q~

2mi

[

φ†(~r, t)~∇φ(~r, t)−
(

~∇φ†(~r, t)
)

φ(~r, t)
]

+
q~

2m
~∇× φ†(~r, t)~σφ(~r, t) (A.72)

for the electric current of a particle with the the mass m and the charge
q that is exposed to an electrostatic environment. Here, φ(~r, t) denotes
the Pauli spinor describing the two-component wavefunction of the particle
evaluated at position ~r and time t, and ~σ ≡ (σx, σy, σz) is the vector of the
Pauli matrices. This expression (A.72) is derived from the more general
definition

~j(~r, t) = qcψ†(~r, t)~αψ(~r, t) (A.73)

of the electric current density in the framework of the relativistic Dirac
equation

i~
∂

∂t
ψ(~r, t) = −i~c~α · ~∇ψ(~r, t) +mc2βψ(~r, t) + V (~r)ψ(~r, t) (A.74)

describing the time evolution of the four-component Dirac spinor ψ in the
presence of the electrostatic potential energy V (~r), with the 4× 4 matrices

αl =

(

0 σl
σl 0

)

(A.75)

for l = 1, 2, 3 and

β =

(

I 0
0 −I

)

, (A.76)

where I is the unit matrix in two dimensions. Defining

ψ(~r, t) ≡ e−imc2t/~

(

φ(~r, t)

φ̃(~r, t)

)

(A.77)
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and solving the resulting equation for the antiparticle component φ̃ as

φ̃(~r, t) ≃ ~

2imc
~σ · ~∇φ(~r, t) +O(1/c2) (A.78)

in leading order in 1/c transforms the expression (A.73) into

~j(~r, t) =
~q

2imc

[

φ†(~r, t)~σ
(

~σ · ~∇φ(~r, t)
)

+
(

~∇φ†(~r, t) · ~σ
)

~σφ(~r, t)
]

.

(A.79)
Equation (A.72) is then obtained using σkσl = δkl + iǫklmσm with δkl and
ǫklm the Kronecker and Levi-Civita symbols, respectively.

In the case of an electron with the charge q = −e that is contained within
an isotropic s-orbital of a hydrogen-like atom, we can write the Pauli spinor
as

φ(~r, t) = ψs(|~r|)e−iEst/~~es , (A.80)

where ψs : R+ → R, r 7→ ψs(r) represents the s orbital, Es is its eigenenergy,
and ~es denotes the unit vector along the orientation of the electron spin.
Introducing the spatial probability density of the electron as ρs(r) = |ψs(r)|2
as well as the Bohr magneton µB = e~/(2m), we obtain the expression

~j(~r, t) = µB~es × ~∇ρs(|~r|) ≡ ~j(~r) (A.81)

for the electric current density that is associated with this state.

According to the Biot-Savart law, this electric current density generates the
magnetic field

~B(~r ′) =
µ0

4π
~∇′ ×

∫

d3r
1

|~r ′ − ~r|
~j(~r) , (A.82)

where µ0 is the vacuum permeability. This magnetic field is evaluated at
the position ~r ′ = 0 of the nucleus as

~B(0) =
µ0

4π

∫

d3r~j(~r)× ~∇ 1

|~r| =
µ0µB

4π

∫

d3r
(

~es × ~∇ρs(|~r|)
)

× ~∇ 1

|~r| ,
(A.83)

where the integration domain must leave out the origin. Using

~∇ 1

|~r| = − 1

|~r|3~r , (A.84)

~∇ρs(|~r|) =
ρ′s(|~r|)
|~r| ~r (A.85)

for all ~r ∈ R3\{0}, as well as

(~es × ~r)× ~r = (~es · ~r)~r − |~r|2~es , (A.86)
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we can therefore evaluate the expression (A.83) in spherical coordinates as

~B(0) =
µ0µB

4π
2π lim

r0→0

∫ ∞

r0

drρ′s(r)

∫ π

0

dθ sin θ(1− cos2 θ)~es

= −2

3
µ0µBρs(0)~es . (A.87)

3.2 The Hamiltonian (3.10)

H = A~I · ~S + CSz (A.88)

is diagonalized within the basis constituted by the simultaneous eigenstates
|mI , ms〉 of the operators ~I2, Iz, ~S

2, Sz, satisfying

~I2|mF , ms〉 = I(I + 1)|mI , ms〉 , (A.89)

Iz|mI , ms〉 = mI |mI , ms〉 , (A.90)

~S2|mI , ms〉 =
3

4
|mI , ms〉 , (A.91)

Sz|mI , ms〉 = ms|mI , ms〉 (A.92)

for all mI ∈ {−I,−I +1, . . . , I} and all ms ∈ {−1/2, 1/2}. To this end, we
express

~I · ~S = IxSx + IySy + IzSz =
1

2
(I+S− + I−S+) + IzSz (A.93)

with I± = Ix ± iIy and S± = Sx + iSy the ladder operators associated with

the angular momenta ~I and ~S, satisfying

I±|mI , ms〉 =
√

I(I + 1)−mI(mI ± 1)|mI ± 1, ms〉 , (A.94)

S±|mI , ms〉 =
√

3/4−ms(ms ± 1)|mI , ms ± 1〉 (A.95)

for all mI ∈ {−I,−I + 1, . . . , I} and all ms ∈ {−1/2, 1/2}. We therefore
obtain

~I · ~S|mI , 1/2〉 =
1

2

√

I(I + 1)−mI(mI + 1)|mI + 1,−1/2〉

+
mI

2
|mI , 1/2〉 , (A.96)

~I · ~S|mI + 1,−1/2〉 = +
1

2

√

I(I + 1)−mI(mI + 1)|mI , 1/2〉

−mI + 1

2
|mI + 1,−1/2〉 (A.97)

for all mI ∈ {−I,−I + 1, . . . , I − 1} and

~I · ~S| ± I,±1/2〉 = I

2
| ± I,±1/2〉 . (A.98)
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Consequently, the Hamiltonien (A.88) separates into the 2× 2 blocks

HmI
=

1

2

(

mIA + C A
√

I(I + 1)−mI(mI + 1)

A
√

I(I + 1)−mI(mI + 1) −(mI + 1)A− C

)

(A.99)
within the subspaces spanned by the states |mI , 1/2〉 and |mI+1,−1/2〉 for
all mI ∈ {−I,−I + 1, . . . , I − 1}, whose diagonalization straightforwardly
yield the eigenvalues

E±
mI

= −A
4
± 1

2

√

A2(I + 1/2)2 + C2 + AC(2mI + 1) . (A.100)

The remaining two eigenstates of H are given by | ± I,±1/2〉 with the
associated eigenvalues E±

I = IA/2± C/2.

3.3 The starting point for this calculation is the Schrödinger equation

i~
∂

∂t
Ψ(~r, ~re, t) = HΨ(~r, ~re, t) (A.101)

for the wavefunction describing the two-body system that is constituted
by the valence electron and the atomic core, where the associated two-
body Hamiltonian is given by Eq. (3.20). This two-body wavefunction is
subjected to the gauge transformation Ψ 7→ ψ defined by

Ψ(~r, ~re, t) = ψ(~r, ~re, t)e
−ieχ(~r,~re,t)/~ (A.102)

with

χ(~r, ~re, t) = 6
∫ ~re

~r

~A(~r ′, t) · d~r ′ (A.103)

for all times t and all positions ~r, ~re of the atomic nucleus and the va-
lence electron, respectively, where the integral on the right-hand side of
Eq. (A.103) is supposed to be carried out along a straight line from ~r to
~re., i.e., we define

6
∫ ~re

~r

~A(~r ′, t) · d~r ′ ≡
∫ 1

0

~A (~r + s(~re − ~r), t) · (~re − ~r)ds (A.104)

for all ~r, ~re and all t. Inserting this gauge transformation (A.102) into the
Schrödinger equation (A.101) yields

i~
∂

∂t
Ψ(~r, ~re, t) =

(

i~
∂

∂t
ψ(~r, ~re, t) + e

∂

∂t
χ(~r, ~re, t)

)

e−ieχ(~r,~re,t)/~ (A.105)

on its left-hand side, where we approximately evaluate

∂

∂t
χ(~r, ~re, t) = −e 6

∫ ~re

~r

~E(~r ′, t) · d~r ′ ≃ e(~r − ~re) · ~E(~r, t) (A.106)



110 APPENDIX A. SOLUTIONS TO THE PROBLEMS

using the expression (3.21) for the electric field ~E and the fact that the
latter varies very weakly on a spatial scale that is comparable to Bohr’s
radius.

For the evaluation of the kinetic terms on the right-hand side of the Schrö-
dinger equation, we calculate

(

~p− e ~A(~r, t)
)

Ψ(~r, ~re, t) =

[(

~p− e ~A(~r, t)− e
∂χ

∂~r
(~r, ~re, t)

)

ψ(~r, ~re, t)

]

×e−ieχ(~r,~re,t)/~ , (A.107)
(

~pe + e ~A(~re, t)
)

Ψ(~r, ~re, t) =

[(

~pe + e ~A(~re, t)− e
∂χ

∂~re
(~r, ~re, t)

)

ψ(~r, ~re, t)

]

×e−ieχ(~r,~re,t)/~ . (A.108)

To evaluate the spatial gradient of the scalar gauge field χ with respect to
~re, we form the difference

χ(~r, ~re + δ~r, t)− χ(~r, ~re, t) = 6
∫ ~re+δ~r

~r

~A(~r ′, t) · d~r ′− 6
∫ ~re

~r

~A(~r ′, t) · d~r ′

= 6
∫ ~re+δ~r

~re

~A(~r ′, t) · d~r ′ −
∮

Γ

~A(~r ′, t) · d~r ′

≃ ~A(~re, t) · δ~r −
∮

Γ

~A(~r ′, t) · d~r ′ (A.109)

where the loop integral
∮

Γ
is perfomed along the triangle path Γ going along

straight lines from ~r to ~re, from ~re to ~re + δ~r, and finally from ~re + δ~r back
to ~r. Using Stokes’ theorem, the expression (3.22) for the magnetic field, as
well as the fact that the latter does not significantly vary on a length scale
corresponding to Bohr’s radius, this loop integral can be approximately
evaluated as

∮

Γ

~A(~r ′, t) · d~r ′ = ©
∫∫

~∇× ~A(~r ′, t) · d~S = ©
∫∫

~B(~r ′, t) · d~S

≃ ~B(~r, t) ·
(

1

2
(~re − ~r)× δ~r

)

=
1

2

(

~B(~r, t)× (~re − ~r)
)

· δ~r , (A.110)

where we have introduced by ◦
∫∫

d~S the surface integral over the area of the

triangle, with d~S being the properly oriented unit vector perpendicular to
the surface. This finally yields

∂χ

∂~re
(~r, ~re, t) ≃ ~A(~re, t)−

1

2
~B(~r, t)× (~re − ~r) . (A.111)
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Performing a similar calculation for the spatial gradient of χ with respect
to ~r, we obtain

∂χ

∂~r
(~r, ~re, t) ≃ − ~A(~r, t)− 1

2
~B(~r, t)× (~re − ~r) . (A.112)

We finally assume that the magnetic component ~B of the electromagnetic
field described by the vector potential ~A is very small compared to the elec-
tric field ~E and can be neglected in the following. This latter approximation
transforms Eqs. (A.107) and (A.108) into

(

~p− e ~A(~r, t)
)

Ψ(~r, ~re, t) ≃ e−ieχ(~r,~re,t)/~~pψ(~r, ~re, t) , (A.113)
(

~pe + e ~A(~re, t)
)

Ψ(~r, ~re, t) ≃ e−ieχ(~r,~re,t)/~~peψ(~r, ~re, t) . (A.114)

From this and Eq. (A.106) follow the gauge-transformed Schrödinger equa-
tion

i~
∂

∂t
ψ(~r, ~re, t) =

p2

2m
ψ(~r, ~re, t) +HΨ(~r, ~re, t) (A.115)

where H is the one-body Hamiltonian defined by Eq. (3.23).

3.4 For the application of time-dependent perturbation theory, we employ the
interaction representation, which amounts to decomposing the wavefunction
describing the valence electron of the atom according to

|ψ〉t =
∑

ν

Cν(t)e
−iEν t/~|ν〉 (A.116)

within the eigenbasis (|ν〉)ν∈N0 of the unperturbed intra-atomic Hamiltonian

H0 = − ~2

2m

∂2

∂~ρ2
+ V(~ρ) =

∑

ν

Eν |ν〉〈ν| . (A.117)

Furthermore, we formally assume that the strength of the perturbation is
adiabatically ramped from zero to a given finite value in the course of time
evolution, namely such that we perform the replacement ~E0(~r) 7→ ~E0(~r)eǫt
within the expression (3.24) for the external electric field, where we shall
take the limit ǫ→ 0+ in the end. The Schrödinger equation describing the
time evolution of the intra-atomic wavefunction in the presence of the laser
field can then be written as

i~
∂

∂t
|ψ〉t = (H0 +H1(t)) |ψ〉t (A.118)

with the perturbation Hamiltonian

H1(t) = e~ρ · ~E0(~r) cos (ωt− ϕ(~r)) eǫt . (A.119)
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Projecting this Schrödinger equation (A.118) onto the eigenstates |ν〉 of
the unperturbed intra-atomic Hamiltonian (A.117) yields the system of
equations

i~
∂

∂t
Cν(t) =

∑

ν′

〈ν|H1(t)|ν ′〉Cν′(t)e
it(Eν−Eν′ )/~ (A.120)

for the amplitudes Cν .

We now assume that the system is initially, i.e., in the asymptotic past,
prepared in the ground state |0〉, such that we can set Cν(t0) = δν0 for all
ν at the initial time t0 → −∞. Defining ων = (Eν − E0)/~ for all ν, the
equation (A.120) is then approximately solved as

Cν(t) ≃
1

i~

∫ t

−∞
〈ν|H1(t

′)|0〉C0(t
′)eiωνt′dt′ (A.121)

in linear order in H1. Using furthermore the fact that we have 〈ν|~ρ|ν〉 = 0
for all eigenstates |ν〉, due to the fact that the latter exhibit a well-defined
(even or odd) parity in the presence of the spherically isotropic potential
V(~ρ) ≡ V(|~ρ|), we obtain in lowest nonvanishing order

i~
∂

∂t
C0(t) ≃

1

i~

∑

ν 6=0

∫ t

−∞
〈0|H1(t)|ν〉〈ν|H1(t

′)|0〉C0(t
′)eiων(t′−t)dt′ (A.122)

for the time evolution of the ground state amplitude C0, where corrections
to the approximate expression (A.122) scale quartically with H1.

Making now the ansatz C0(t) = exp(−iδ0(t)), we obtain from Eq. (A.122)
the equation

~
d

dt
δ0(t) =

1

i~

∑

ν 6=0

∣

∣

∣
〈ν|e~ρ · ~E0(~r)|0〉

∣

∣

∣

2

eǫt cos(ωt− ϕ(~r))

×
∫ t

−∞
eǫt

′

cos(ωt′ − ϕ(~r))eiων(t′−t)ei(δ0(t
′)−δ0(t)) (A.123)

=
e2ǫt

4i~

∑

ν 6=0

∣

∣

∣
〈ν|e~ρ · ~E0(~r)|0〉

∣

∣

∣

2

×
(

1 + e2i(ωt−ϕ0(~r))

ǫ+ i(ων + ω)
+

1 + e2i(ωt−ϕ0(~r))

ǫ+ i(ων − ω)

)

(A.124)

describing the time evolution of the phase δ0, where we use the fact that
owing to Eq. (A.123) we have δ0(t

′)−δ0(t) ∼ O(E2
0 ) for all t, t

′, such that we
can set exp[i(δ0(t

′)− δ0(t))] ≃ 1 within this equation (A.123). Performing
the limit ǫ → 0+ within Eq. (A.124) and neglecting contributions that are
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highly oscillatory in time (and will therefore vanish if a temporal average
over a finite time interval is performed), we finally obtain

C0(t) = e−i∆E0(t−t0)/~ (A.125)

with the ground state energy shift

∆E0 =
1

4

∑

ν 6=0

∣

∣

∣
〈ν|e~ρ · ~E0(~r)|0〉

∣

∣

∣

2
(

1

E0 − Eν − ~ω
+

1

E0 −Eν + ~ω

)

.

(A.126)
The expression (3.25) is recovered from Eq. (A.126) in the case that we have
ων ≫ ω1 for all ν > 1, which allows us to appproximate the sum within
Eq. (A.126) by a single term corresponding to the denominator E0 −E1 +
~ω.

3.5 In accordance with the assumption that the inner core-shell electrons are
not appreciably affected by the atom-atom interaction, we consider the
two interacting atoms as being very similar to hydrogen. We therefore
permit ourselves to describe each one of those atoms by a two-body system
composed of a valence electron, located within an s shell, and an atomic core
featuring the screened nuclear charge number Z = 1. From the expression
(3.33) in combination with Eqs. (3.29)–(3.31), we infer the perturbation
operator

V = VeN (X1, ξ2) + VeN (X2, ξ1) + Vee (ξ1, ξ2) + VNN (X1, X2)

≃ e2

4πǫ0

(

1

|~r1 − ~r2|
+

1

|~re,1 − ~re,2|
− 1

|~r1 − ~re,2|
− 1

|~re,1 − ~r2|

)

(A.127)

with respect to the unperturbed situation of two independent neutral atoms,
where we assume that electron i is associated with the nucleus i for i = 1
and 2.

Performing a Taylor series expansion of the expression (A.127) in the local
atomic coordinates ~ρi = ~re,i − ~ri ≡ (xi, yi, zi) of the electron i yields in
lowest nonvanishing order

V ≃ e2

4πǫ0r3
(~ρ1 · ~ρ2 − 3z1z2) (A.128)

with r = |~r1−~r2|, where we set the z axis of our coordinate system parallel
to the distance vector ~r1 − ~r2 of the atoms. This perturbation operator
features a vanishing expectation value within the spherically isotropic s
state in which the valence electron is located. Furthermore, owing to the
quantum defect that is induced by the presence of the core, the energy
level of this s state is, for alkali atoms, decreased with respect to the levels
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of other states with higher angular momentum l > 0 in the same valence
shell. Consequently, the impact of the operator V onto the lowest energy
level of the two-atom system under consideration has to be evaluated using
nondegenerate perturbation theory in second order. This gives rise to an
asymptotic scaling U(r) ≃ −C/r6 of the atom-atom interaction energy at
large inter-atomic distance r.

3.6 From Eqs. (3.42) and (3.43) we infer

d~R =
1

2
d~r1 +

1

2
d~r2 , (A.129)

d~r = d~r1 − d~r2 , (A.130)

from which result the two equations

∂

∂~r1
=

∑

j=x,y,z

(

∂Rj

∂r1,i

∂

∂Rj
+

∂rj
∂r1,i

∂

∂rj

)

~ei =
1

2

∂

∂ ~R
+

∂

∂~r
, (A.131)

∂

∂~r2
=

∑

j=x,y,z

(

∂Rj

∂r2,i

∂

∂Rj
+

∂rj
∂r2,i

∂

∂rj

)

~ei =
1

2

∂

∂ ~R
− ∂

∂~r
. (A.132)

We therefore obtain

∂2

∂~r 2
1

=
1

4

∂2

∂ ~R 2
+

∂2

∂~r 2
+

1

2

∂2

∂ ~R∂~r
+

1

2

∂2

∂~r∂ ~R
, (A.133)

∂2

∂~r 2
2

=
1

4

∂2

∂ ~R 2
+

∂2

∂~r 2
− 1

2

∂2

∂ ~R∂~r
− 1

2

∂2

∂~r∂ ~R
(A.134)

from which results Eq. (3.45).

3.7 We start from the diagonalization of the Hamiltonian

H0 = − ~2

2mr

∂2

∂~r 2
=

∫

d3k
~2k2

2mr
|k〉〈k| (A.135)

within the eigenbasis of the plane-wave states 〈~r|~k〉 = (2π)−3/2 exp(i~k · ~r).
The associated retarded Green function is then expressed as

G0(E) = (E −H0 + iǫ)−1 =

∫

d3k
1

E − ~2k2

2mr
+ iǫ

|k〉〈k| (A.136)

in the limit ǫ→ 0+. Its position representation is therefore obtained as

〈~r|G0(E)|~r ′〉 =
1

(2π)3

∫

d3k
ei
~k·(~r ′−~r)

E − ~2k2

2mr
+ iǫ

= − mr

4π3~2

∫

d3k
ei
~k·(~r ′−~r)

k2 − k2E − iδ
(A.137)
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with kE =
√
2mrE/~ and δ = 2mrǫ/~

2.

Using spherical coordinates with the polar angle defined with respect to
the ~r ′ − ~r axis and defining ρ = |~r − ~r ′|, we evaluate the integral on the
right-hand side of Eq. (A.137) as

〈~r|G0(E)|~r ′〉 = − mr

4π3~2
2π

∫ ∞

0

k2dk

∫ π

0

sin θdθ
eik|~r−~r ′| cos θ

k2 − k2E − iδ

= − mr

2iπ2~2|~r − ~r ′|

∫ ∞

0

eik|~r−~r ′| − e−ik|~r−~r ′|

k2 − k2E − iδ
kdk

= − mr

2iπ2~2|~r − ~r ′|

∫ ∞

−∞

keik|~r−~r ′|

k2 − k2E − iδ
dk

= − mr

2π~2|~r − ~r ′| exp
(

i
√

k2E + iδ|~r − ~r ′|
)

(A.138)

using, in the last step, the residue theorem. In the limit δ → 0+ we obtain

〈~r|G0(E)|~r ′〉 = − mr

2π~2

eikE |~r−~r ′|

|~r − ~r ′| . (A.139)

3.8 As the wave packet is prepared far away from the origin, we can safely
assume that it first evolves freely, without being affected by the presence
of the scattering potential. It is therefore possible to identify a time t0 in
the asymptotic past until which the wavefunction is given by the general
expression (3.50). We are then concerned with the problem of calculating
the solution of the Schrödinger equation (3.49) in the presence of the initial
condition (3.50) at t = t0.

This problem can be solved by means of a Laplace transformation. To this
end, which we formally rewrite Eq. (3.49) as

i~
∂

∂t
|ψt〉 = (H0 + U)|ψt〉 (A.140)

with 〈~r|ψt〉 = ψ(~r, t) for all ~r, t and the hermitian kinetic an potential
energy operators

H0 = − ~2

2mr
, (A.141)

U = U(~r) . (A.142)

The Laplace transform of the wave vector |ψt〉 is defined as

|ψ̃E〉 =
1

i~

∫ ∞

t0

|ψt〉ei(E+iǫ)(t−t0)/~dt (A.143)
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in terms of a real energy parameter E ∈ R, where the positive imaginary
part ǫ > 0 is needed to enforce the convergence of the integral appearing
on the right-hand side of Eq. (A.143). Its associated inverse transform is
given by

|ψt〉 =
i

2π

∫ ∞

−∞
|ψ̃E〉e−i(E+iǫ)(t−t0)/~dE (A.144)

for all t > t0. Evaluating

1

i~

∫ ∞

t0

(

i~
∂

∂t
|ψt〉

)

ei(E+iǫ)(t−t0)/~dt = (E + iǫ)|ψ̃E〉 − |ψt0〉 (A.145)

through integration by parts, we obtain the Laplace transform of the Schrö-
dinger equation (A.140) as

(E −H0 − U + iǫ) |ψ̃E〉 = |ψt0〉 . (A.146)

This equation is formally solved as

|ψ̃E〉 = G(E)|ψt0〉 (A.147)

where we introduce by

G(E) = (E −H0 − U + iǫ)−1 (A.148)

the retarded Green function associated with the HamiltonianH0+U . Defin-
ing by

G0(E) = (E −H0 + iǫ)−1 (A.149)

the Green function of the unperturbed free motion, we have the identity

G−1
0 (E) = G−1(E) + U (A.150)

from which we straightforwardly obtain, by applying the operator G0(E)
onto Eq. (A.150) and by applying the latter onto G(E), the self-consistent
Dyson equation

G(E) = G0(E) +G0(E)UG(E) (A.151)

that the Green function G(E) has to fulfill.

Considering the initial profile (3.50) of the wavefunction at the time t0 and
making use of the linearity of the Green operator G(E), we can write the
sought-after solution of the time evolution problem under consideration as

|ψt〉 =
∫

d3k α(~k)|ψ~k,t〉e−iEkt0/~ (A.152)

with 〈~r|ψ~k,t0
〉 = exp(i~k · ~r) for all ~r and

|ψ~k,t〉 =
i

2π

∫ ∞

−∞
|ψ̃~k,E〉e−i(E+iǫ)(t−t0)/~dE (A.153)
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for all t > t0 where the Laplace transformed wave vector |ψ̃~k,E〉 satisfies the
self-consistent equation

|ψ̃~k,E〉 = G0(E)|ψ~k,t0
〉+G0(E)U |ψ̃~k,E〉 . (A.154)

Using the fact that the plane wave |ψ~k,t0
〉 is an eigenstate of H0, we evaluate

〈~r|G0(E)|ψ~k,t0
〉 = ei

~k·~r

E −Ek + iǫ
(A.155)

with Ek = ~2k2/(2mr) for all ~r. Using furthermore the position represen-
tation (A.139) of the unperturbed Green function which was derived in the
previous problem, we obtain the position representation of the wave vector
|ψ̃~k,E〉 as

〈~r|ψ̃~k,E〉 =
1

E − Ek + iǫ
ψ~k(~r) (A.156)

with the scattering wavefunction ψ~k satisfying the self-consistent Lippmann-
Schwinger equation

ψ~k(~r) = ei
~k·~r − mr

2π~2

∫

d3r′
eik|~r−~r ′|

|~r − ~r ′|U(~r
′)ψ~k(~r

′) . (A.157)

By evaluating the integral on the right-hand side of Eq. (A.153) with the
residue theorem, where we take into account the pole at E = Ek − iǫ that
is introduced through the expression (A.156), we obtain

〈~r|ψ~k,t〉 = ψ~k(~r)e
−iEk(t−t0)/~ , (A.158)

from which follows

ψ(~r, t) = 〈~r|ψt〉 =
∫

d3k α(~k)ψ~k(~r)e
−iEkt/~ (A.159)

for all ~r and all t > t0.

3.9 To show the validity of Eq. (3.54) for the scattering wavefunction satisfying
the Lippmann-Schwinger equation (3.53), we first note that we can write

∂2

∂~r 2

eik|~r−~r ′|

|~r − ~r ′| =
∂2

∂~ρ 2

eikρ

ρ

∣

∣

∣

∣

~ρ=~r−~r ′

(A.160)

for all ~r, ~r ′. By the application of the product rule, we calculate

∂

∂~ρ

eikρ

ρ
=

1

ρ

∂

∂~ρ
eikρ + eikρ

∂

∂~ρ

1

ρ
=
ikρ− 1

ρ3
eikρ~ρ (A.161)
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and hence

∂

∂~ρ
· ∂
∂~ρ

eikρ

ρ
=

(

3− 2ikρ

ρ3
+
ikρ− 1

ρ3
(3 + ikρ)

)

eikρ = −k2 e
ikρ

ρ
(A.162)

for all ~ρ 6= 0. To figure out what happens at the origin, we integrate the
Laplacian of eikρ/ρ over a sphere S of infinitesimal radius R → 0 centred
about the origin. This yields with Gauss’s law
∫∫∫

S

∂2

∂~ρ 2

eikρ

ρ
d3ρ = ©

∫∫

∂S

∂

∂~ρ

eikρ

ρ
· d~S = 4π(ikR− 1)eikR

R→0−→ −4π (A.163)

with d~S the normal unit vector oriented outside the sphere, from which we
infer

∂2

∂~ρ 2

eikρ

ρ
= −k2 e

ikρ

ρ
− 4πδ(~ρ) (A.164)

for all ~ρ. With this relation, we evaluate

− ~
2

2mr

∂2

∂~r 2
ψ~k(~r) =

~
2k2

2mr
ψ~k(~r)− U(~r)ψ~k(~r) (A.165)

for ψ~k satisfying Eq. (3.53), which proves Eq. (3.54).

3.10 Inserting the expressions (3.57), (3.60), (3.61), and (3.62) into Eq. (3.55)
yields

0 = ψ~k(~r)− ei
~k·~r +

a(θ)

r
eikr

=
∞
∑

l=0

Pl(cos θ)
Al

r
sin(kr − lπ/2 + δl)

−
∞
∑

l=0

il(2l + 1)Pl(cos θ)
1

kr
sin(kr − lπ/2) +

a(θ)

r
eikr

=
1

r

(

Aeikr + Be−ikr
)

(A.166)

with

A =
1

2i

∞
∑

l=0

Pl(cos θ)

(

Ale
iδl − il

k
(2l + 1)

)

e−ilπ/2 + a(θ) , (A.167)

B = − 1

2i

∞
∑

l=0

Pl(cos θ)

(

Ale
−iδl − il

k
(2l + 1)

)

eilπ/2 . (A.168)

As Eq. (A.166) has to be valid for all r, we must have A = B = 0. We infer
from the expression (A.168)

Al =
il

k
(2l + 1)eiδl (A.169)
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for all l ∈ N0. Inserting this result into the expression (A.167) then yields

a(θ) = −1

k

∞
∑

l=0

(2l + 1) sin δle
iδlPl(cos θ) . (A.170)

3.11 We start from the radial Schrödinger equation (3.58) which is rewritten as

−χ′′
l (r) +

l(l + 1)

r2
χl(r) +

2mr

~2
u(r)χl(r) = k2χl(r) . (A.171)

As we have the scaling u(r) ∼ −r−n with n > 3 for large r → ∞, we can
define a characteristic length scale

r1 = lim
r→∞

(

−2mr

~2
u(r)rn

)1/(n−2)

(A.172)

such that we can approximate

2mru(r)

~2
≃ −r

n−2
1

rn
(A.173)

for large r. The limit k → 0 allows us to introduce another length scale r2
satisfying r1 ≪ r2 ≪ k−1, which is such that we can justify to perform the
approximation (A.173) within Eq. (A.171) for r > r2, while for r < r2 the
right-hand side of Eq. (A.171) can safely be set to zero.

We therefore can approximate the radial Schrödinger equation (A.171) as

−χ′′
l (r) +

l(l + 1)

r2
χl(r) +

2mr

~2
u(r)χl(r) = 0 (A.174)

for 0 < r ≤ r2. Its solution is, in the presence of the boundary condition
χl(0) = 0, uniquely defined up to a global prefactor. As the wave number
k does not appear within Eq. (A.174), any nontrivial dependence of χl

on k must be contained within this prefactor, i.e., such that we have the
factorization χl(r) = Cl(k)χ̃l(r) with a k-dependent constant Cl(k) and
a function χ̃l that is independent of k. Treating the right-hand side of
Eq. (A.171) in a perturbative manner gives rise to first-order correction
terms to this function χ̃l which logically scale quadratically with k.

For r ≥ r2, on the other hand, we can approximate the radial Schrödinger
equation (A.171) as

−χ′′
l (r) +

l(l + 1)

r2
χl(r)−

rn−2
1

rn
χl(r) = k2χl(r) . (A.175)

Noting that we have r1 ≪ r for all values of r for which this equation
is defined, we can employ a perturbative approach to solve Eq. (A.175),
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where we treat the asymptotic tail of the scattering potential as a weak
perturbation to the free radial equation

−χ′′
l (r) +

l(l + 1)

r2
χl(x) = k2χl(r) . (A.176)

The general solution of this free radial equation is straightforwardly written
as the linear combination

χl(r) = Clφl+(kr) + Slφl−(kr) (A.177)

of the two functions

φl+(x) = xjl(x) , (A.178)

φl−(x) = xyl(x) (A.179)

that are defined in terms of the spherical Bessel functions jl and yl. Ow-
ing to the well-known properties of those Bessel functions, we infer the
asymptotic behaviour

φl+(x) ≃ sin(x− lπ/2) , (A.180)

φl−(x) ≃ − cos(x− lπ/2) (A.181)

for x→ ∞ as well as

φl+(x) ≃ xl+1

(2l + 1)!!

(

1− x2

4l + 6
+O(x4)

)

, (A.182)

φl−(x) ≃ −(2l − 1)!!

xl

(

1 +
x2

4l − 2
+O(x4)

)

(A.183)

for x → 0 where we define (2n + 1)!! = (2n + 1)(2n − 1) · · ·3 · 1 for all
n ∈ N0. Since we aim to asymptotically match the expression (3.60) of the
radial wavefunction, such that we have χl(r) = Al sin(kr − lπ/2 + δl) for
large r, we set Cl = Al cos δl and Sl = −Al sin δl within Eq. (A.177).

Our aim is now to refine the expressions (A.182) and (A.183) such that
those two solutions account for the presence of the asymptotic tail of the
scattering potential in a perturbative manner. This task can be achieved
via the self-consistent equation

χl(r) = φl±(kr)

(

1− (kr1)
n−2

∫ 1

kr

dx

φ2
l±(x)

∫ 1

x

φl±(x
′)

x′n
χl(x

′)dx′
)

(A.184)

that the solution of Eq. (A.175) has to satisfy if we require that it should
match φl±(kr) for kr = 1. We here assume that the presence of the pertur-
bative term ∝ r−n within Eq. (A.175) can be strictly neglected for kr ≥ 1
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(which is certainly valid in the limit k → 0) and use the fact that the spher-
ical Bessel functions jl(x) and yl(x) do not exhibit a zero within 0 < x ≤ 1.
The integral equation (A.184) can be iteratively solved by successively in-
serting more and more refined approximations for χl on its right-hand side.
In linear order in the perturbation, we thereby obtain the refinements

φ̃l±(x) = φl±(x)

(

1− (kr1)
n−2

∫ 1

x

dx′

φ2
l±(x

′)

∫ 1

x′

φ2
l±(x

′′)

x′′n
dx′′
)

(A.185)

for the two approximate solutions φl+ and φl−.

It is worthwhile to investigate the scaling of those two refined approxima-
tions in the limit of small x. We first note, by virtue of Eqs. (A.182) and
(A.183), that the unperturbed solutions scale for small x as φl±(x) ∝ ±xνl±
with the exponents νl+ = l+1 and νl− = −l. The integrand of the inner in-
tegral on the right-hand side of Eq. (A.185) therefore scales as ∝ (x′′)2νl±−n

for small x′′. This implies that this inner integral diverges as ∝ (x′)2νl±−n+1

for small x′ if 2νl± < n − 1, while it gives rise to a finite expression for
x′ → 0 if 2νl± ≥ n and to a logarithmic scaling ∝ ln(x′) if 2νl± = n − 1.
As the denominator in the integrand of the outer integral contributes an
additional factor ∝ (x′)−2νl± for small x′, we obtain for this outer integral
the scaling ∝ x−n+2 if 2νl± < n − 1, ∝ x−2νl±+1 if 2νl± ≥ n, as well as
∝ −x−n+2 lnx for the special case 2νl± = n− 1.

Hence, since we have 2νl− = −2l < n − 1, we can approximately rewrite
the expression (A.185) for φ̃l− as

φ̃l−(kr) ≃ φl−(kr)
[

1− C(r1/r)
n−2
]

(A.186)

for small kr ≪ 1, with a constant C > 0 that is independent of k. Since
we have r1 ≪ r2 ≤ r, the perturbative correction to the unperturbed
expression (A.183) can safely be neglected. We can therefore rely on the
approximation φ̃l−(kr) ≃ φl−(kr) for all r ≥ r2. Analogous conclusions are
drawn for φ̃l+ if we have 2νl+ = 2l + 2 < n − 1. As for φ̃l−, we obtain for
small kr ≪ 1

φ̃l+(kr) ≃ φl+(kr)
[

1− C(r1/r)
n−2
]

, (A.187)

with a constant C > 0 that is independent of k. Since we have r1 ≪ r2 ≤ r,
we are therefore entitled to approximate φ̃l+(kr) ≃ φl+(kr) for all r ≥ r2.

Consequently, provided we have 2l + 3 < n, the solution (A.177) can be
approximated as

χl(r) ≃ Al

(

cos δl
(2l + 1)!!

(kr)l+1 + (2l − 1)!!
sin δl
(kr)l

)

(A.188)

for r2 ≤ r ≪ k−1. This behaviour has to be matched at r = r2 with the
solution of the Schrödinger equation (A.174). As was pointed out above,
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the latter solution can feature a dependence on k only within its global pref-
actor. Hence, we need to have tan δl ∝ (kr2)

2l+1 in order for the expression
(A.188) to match the solution of Eq. (A.174), from which follows δl ∝ k2l+1

in the limit kr2 → 0.

The situation is fundamentally different, however, if 2l+ 3 > n. Going one
level beyond the leading-order evaluation of Eq. (A.185), we obtain, in that
case, from the above considerations the approximate expression

φ̃l+(kr) ≃ φl+(kr)

[

1− C
(kr1)

n−2

(kr)2l+1

(

1 + cl(kr)
2
)

]

≃ Cl
(2l + 1)!!

[

(kr)l+1 − C
(kr1)

n−2

(kr)l
(

1 + cl(kr)
2
)

]

(A.189)

for small kr ≪ 1, with a constant C > 0 that is independent of k and with
cl = (2l + 1)/[(2l + 3)(2l − 1)]. As we have 2l + 3 > n, the second term on
the right-hand side of Eq. (A.189) becomes more important than the first
term in the formal limit k → 0. We therefore evaluate Eq. (A.177) as

χl(r) ≃ Al

(kr)l
(2l − 1)!! sin δl

(

1 +
(kr)2

4l − 2

)

− Al

(kr)l
C cos δl
(2l + 1)!!

(kr1)
n−2
(

1 + cl(kr)
2
)

(A.190)

for r2 ≤ r ≪ k−1, where we account for the leading corrections in (kr)2.
Noting that first-order corrections to the zeroth order expression of the scat-
tering wavefunction must scale as k2 while any other nontrivial dependence
on k must be contained within a global prefactor, we find that we must
have the scaling δl ≃ tan δl ∝ kn−2 in the limit k → 0.

The above reasoning can effectively be maintained for 2l + 3 = n. In that
case, the constant C appearing within Eq. (A.187) has to be amended by
a logarithmic prefactor, namely such that we have

φ̃l+(kr) ≃ φl+(kr)
[

1 + C(r1/r)
n−2 ln(kr)

]

, (A.191)

with C > 0 being independent of k. Hence, in the formal limit k → 0
while keeping r2/r1 constant, the second term on the right-hand side of
Eq. (A.191) becomes therefore more important than the first one, and we
obtain for Eq. (A.177) the approximation

χl(r) ≃
Al

(kr)l

(

(2l − 1)!! sin δl +
C cos δl
(2l + 1)!!

(kr1)
n−2 ln(kr)

)

(A.192)

for r2 ≤ r ≪ k−1. Since the logarithmic prefactor ln(kr) is of minor
importance as compared to the power law ∝ kn−2, we obtain again the
scaling δl ∝ k2l+1 = kn−2 for this particular case.
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It remains to be verified to which extent the above findings remain valid
when going to higher iteration orders in the perturbative solution of the self-
consistent equation (A.184). This consideration specifically concerns φ̃l+ in
the case 2l+3 ≥ n, for which it was found that the “perturbative” correction
term, scaling as ∝ kn−l−2 in Eq. (A.189), becomes more important than the
“unperturbed” term, scaling as ∝ kl+1 for small k. To this end, we insert
the refined expression (A.189) for φ̃l+ into the right-hand side of Eq. (A.184)
in order to thereby obtain an even better approximation for this particular
solution of the differential equation (A.175). As we have φ̃l+(x) ∝ x−l for
small x in the case 2l + 3 ≥ n, amended by the logarithmic prefactor ln(x)
in the special case 2l + 3 = n, it can be straightforwardly shown that the
resulting second-order corrections to the expression (A.189) are of negligible
importance and do not alter the scaling law δl ∝ kn−2 in that case.

3.12 The radial Schrödinger equation (3.58) for l = 0 in the presence of the
piecewise constant potential is solved through the general ansatz

χ0(r) =

{

B0 sin(κkr) : r < r0
A0 sin(kr − δ0) : r > r0

(A.193)

with

κk =
√

k2 + 2mrU0/~2 , (A.194)

where we already account for the boundary condition χ0(0) = 0 as well as
for the definition of the s-wave scattering phase δ0. At r = r0 both χ0 and
its first derivative χ′

0 have to be continuous. This yields the two equations

B0 sin(κkr0) = A0 sin(kr0 − δ0) , (A.195)

κkB0 cos(κkr0) = kA0 cos(kr0 − δ0) . (A.196)

From Eq. (A.195) we obtain B0 = αkA0 with αk being defined by Eq. (3.75).
Dividing Eq. (A.195) through Eq. (A.196) yields the relation

1

κk
tan(κkr0) =

1

k
tan(kr0 − δ0) (A.197)

which is solved for δ0 as

δ0 = kr0 − arctan

[

k

κk
tan(κkr0)

]

(A.198)

in accordance with Eq. (3.77).

3.13 (a) We calculate for this purpose the partial Fourier transform of the
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Lippmann-Schwinger equation (3.94), yielding

∫

d3r′Tk(~r, ~r
′)ei

~k·~r ′

= U(~r)ei
~k·~r − mrU(~r)

2π~2

∫

d3r′′
eik|~r−~r ′′|

|~r − ~r ′′|

×
∫

d3r′Tk(~r
′′, ~r ′)ei

~k·~r ′

= U(~r)ψ~k(~r) (A.199)

according to the definition (3.95). Hence, Eq. (3.95) can be rewritten
as

ψ~k(~r) = ei
~k·~r − mr

2π~2

∫

d3r′′
eik|~r−~r ′′|

|~r − ~r ′′|U(~r
′′)ψ~k(~r

′′) , (A.200)

which is identical to the Lippmann-Schwinger equation (3.53) for the
scattering wavefunction.

(b) We approach this problem via the Born series for the T matrix, yielding

Tk(~r, ~r
′) = lim

n→∞
T

(n)
k (~r, ~r ′) (A.201)

where we iteratively define

T
(0)
k (~r, ~r ′) = u(r)δ(~r − ~r ′) , (A.202)

T
(n)
k (~r, ~r ′) = −mru(r)

2π~2

∫

d3r′′
eik|~r−~r ′′|

|~r − ~r ′′|T
(n−1)
k (~r ′′, ~r ′)(A.203)

for all n > 0. We straightforwardly verify
∫

u(r)~rd3r = 0 for the
spherically symmetric scattering potential and hence have
∫

d3r

∫

d3r′T
(0)
k (~r, ~r ′)~r =

∫

d3r

∫

d3r′T
(0)
k (~r, ~r ′)~r ′ = 0 . (A.204)

Suppose now that T
(n−1)
k satisfies the property (3.97). for some n > 0.

Via Eq. (A.203) we can then directly infer
∫

d3r

∫

d3r′T
(n)
k (~r, ~r ′)~r ′ = 0 (A.205)

and hence prove the identity (3.97) for the T matrix. The analogous
identity (3.96) will be proven by showing that the functions

U
(n)
k (~r) =

∫

d3r′T
(n)
k (~r, ~r ′) (A.206)

are spherically symmetric, i.e., depend only on the radius r = |~r|. This
is trivially the case for n = 0 where we have U

(0)
k (~r) = u(r). Assuming
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spherical symmetry for U
(n−1)
k , i.e. U

(n−1)
k (~r) ≡ u

(n−1)
k (r), we calculate,

using Eq. (A.203) and employing spherical coordinates,

U
(n)
k (~r) = −mru(r)

2π~2

∫

d3r′
eikr

′

r′
u
(n−1)
k (|~r − ~r ′|)

= −mru(r)

~2

∫ 1

−1

dη

∫ ∞

0

r′dr′u
(n−1)
k

(

√

r2 + r′2 − 2rr′η

)

eikr
′

≡ u
(n)
k (r) , (A.207)

i.e., we obtain spherical symmetry for U
(n)
k . This then proves the

identity (3.96).

(c) In leading order in 1/r, using

eik|~r−~r ′|

|~r − ~r ′| =
eikr

r
e−ik~er·~r ′

(1 +O(r′/r)) , (A.208)

the scattering wavefunction (3.95) is asymptotically evaluated as

ψ~k(~r) = ei
~k·~r − mr

2π~2

eikr

r

∫

d3r′
∫

d3r′′Tk(~r
′, ~r ′′)e−ik~er·~r ′

ei
~k·~r ′′

.

(A.209)
A comparison with Eq. (3.55) yields the expression

a(θ) =
mr

2π~2

∫

d3r

∫

d3r′Tk(~r, ~r
′)e−ik~er·~r ′

ei
~k·~r ′′

(A.210)

for the scattering amplitude as a function of the T matrix, which is in
principle valid for any k. Using the Taylor series expansion

e−ik~er·~r ′

ei
~k·~r ′′

= 1− ik~er · ~r ′ + i~k · ~r ′′ +O(k2) (A.211)

as well as the properties (3.96) and (3.97) shown in the previous exer-
cise, we obtain the statement of Eq. (3.98).

(d) Equation (3.100) is straightforwardly shown by evaluating Eq. (3.98)
in the limit k → 0. To prove the scaling of linear corrections in k,
we formally solve the Lippmann-Schwinger equation (3.94) in terms
of the Born series via the introduction of the operators T̂k, Û , and Ĝk

whose matrix elements in position space are given by

〈~r|T̂k|~r ′〉 = Tk(~r, ~r
′) , (A.212)

〈~r|Û |~r ′〉 = U(~r)δ(~r − ~r ′) , (A.213)

〈~r|Ĝk|~r ′〉 = − mr

2π~2

eik|~r−~r ′|

|~r − ~r ′| . (A.214)
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Equation (3.94) is then rewritten and formally solved as

T̂k = Û + Û ĜkT̂k = Û

∞
∑

n=0

(

ĜkÛ
)n

. (A.215)

We now perform a Taylor series expansion Ĝk = Ĝ0 + kĜ′
0 +O(k2) of

the Green operator, with

〈~r|Ĝ0|~r ′〉 = − mr

2π~2|~r − ~r ′| , (A.216)

〈~r|Ĝ′
0|~r ′〉 = − imr

2π~2
. (A.217)

The corresponding Taylor series expansion of the T matrix is then
written as T̂k = T̂0 + kT̂ ′

0 +O(k2), where we obtain from Eq. (A.215)

T̂0 = Û
∞
∑

n=0

(

Ĝ0Û
)n

, (A.218)

T̂ ′
0 = Û

∞
∑

n=1

n−1
∑

l=0

(

Ĝ0Û
)l

Ĝ′
0Û
(

Ĝ0Û
)n−l−1

= T̂0Ĝ
′
0T̂0 . (A.219)

Using Eq. (A.217), this yields the relation

∫

d3r

∫

d3r′T ′
0(~r, ~r

′) = − imr

2π~2

(
∫

d3r

∫

d3r′T0(~r, ~r
′)

)2

= −2πi~2a2s
mr

(A.220)

with the expression (3.100) for the s-wave scattering length. Hence,
we obtain from Eq. (3.98)

a(θ) =
mr

2π~2

∫

d3r

∫

d3r′ [T0(~r, ~r
′) + kT ′

0(~r, ~r
′)] +O(k2)

= as − ika2s +O(k2) . (A.221)

3.14 Let us first calculate the Fourier transform of the function f(~k) = k−2.
Using spherical coordinates, this integration yields

∫

d3k
ei
~k·~r

k2
= 2π

∫ ∞

0

dk

∫ π

0

sin θdθeikr cos θ = 4π

∫ ∞

0

sin kr

kr
dk

=
2π2

r
. (A.222)
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Using gk =
∫

u(r)ei
~k·~rd3r =

∫

u(r′)e−i~k·~r ′

d3r′, we can now calculate

∫

g2k
k2
d3k =

∫

d3ru(r)

∫

d3r′u(r′)

∫

d3k
ei
~k·(~r−~r ′)

k2

= 2π2

∫

d3r

∫

d3r′
u(r)u(r′)

|~r − ~r ′| =
2π2g2

ρ
, (A.223)

from which follows Eq. (3.101).

Problems of Chapter 4

4.1 Inserting the D-dimensional ansatz (4.38) into Eq. (4.7) yields

EGP[ψ0] = E⊥ +

∫

dDr

[

ψ∗
0(r)

(

− ~2

2m

∂2

∂r2
+ V (r)

)

ψ0(r) +
gD
2
|ψ0(r)|4

]

(A.224)
with E⊥ = (3−D)~ω⊥/2 the ground-state energy of a (3−D) dimensional
isotropic harmonic oscillator with the frequency ω⊥ and

gD = g
3
∏

j=D+1

∫

drj|χ⊥(rj)|4 . (A.225)

Using the well-known expression

χ⊥(r) = π−1/4a
−1/2
⊥ e−r2/(2a2⊥) (A.226)

for the ground-state wavefunction of a one-dimensional harmonic oscillator
with the oscillator length a⊥ =

√

~/(mω⊥), we evaluate

∫

dr|χ⊥(r)|4 =
1√
2πa⊥

(A.227)

and thus obtain
gD =

g

(
√
2πa⊥)(3−D)

. (A.228)

Equations (4.40) and (4.41) result then from inserting g = 4π~2as/m into
the above expression.

4.2 While it can be straightforwardly shown, through derivations of the tanh
function, that the expression (4.14) satisfies the one-dimensional Gross-
Pitaevskii equation (4.13), we proceed here via an explicit integration of
Eq. (4.13), also in order to show that Eq. (4.14) is the unique solution if
the boundary conditions ψ0(0) = 0 and limz→∞ ψ0(z) =

√
n =

√

(µ− V0)/g
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are imposed. To this end, let us introduce a dimensionless condensate
wavefunction χ0 through

ψ0(z) ≡
√
nχ0(z/ξ) (A.229)

for all z. Equation (4.13) is then equivalent to

−χ′′
0(ζ) + χ3

0(ζ) = χ0(ζ) . (A.230)

Multiplying this equation with 2χ′(ζ) and integrating it over ζ yields

−[χ′
0(ζ)]

2 + χ4
0(ζ)/2 = χ2

0(ζ)− C , (A.231)

where the constant resulting from this first integral has to be set to C = 1/2

in order to fulfill the asymptotic boundary condition χ0(ζ)
ζ→∞
= 1. We then

have

[χ′
0(ζ)]

2 =
1

2

[

1− χ2
0(ζ)

]2
(A.232)

from which follows

χ′
0(ζ) = ± 1√

2

[

1− χ2
0(ζ)

]

. (A.233)

Using the other boundary condition χ0(0) = 0 and taking into account
only the upper sign (without loss of generality since the opposite choice
would only yield a sign change in the condensate wavefunction), this latter
first-order differential equation is readily integrated yielding

ζ =

∫ χ0(ζ)

0

√
2

1− x2
dx =

1√
2
ln

(

1 + χ0(ζ)

1− χ0(ζ)

)

. (A.234)

Solving this equation for χ0(ζ) yields

χ0(ζ) = tanh(ζ/
√
2) , (A.235)

from which Eq. (4.14) can be inferred.

4.3 As in the case of the previous problem, we introduce a dimensionless con-
densate wavefunction χ0 through

ψ0(z) ≡
√
nχ0(z/ξ̃) (A.236)

for all z. Equation (4.13) is then equivalent to

−χ′′
0(ζ)− χ3

0(ζ) + χ0(ζ) = 0 . (A.237)

A first integral of this second-order differential equation, after multiplication
with 2χ′

0(ζ), yields

−[χ′
0(ζ)]

2 − χ4
0(ζ)/2 + χ2

0(ζ) = C (A.238)
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with an integration constant C that has to vanish if χ0 is square-integrable
and thus fulfills limζ→±∞ χ0(ζ) = 0. Setting C = 0, we obtain

χ′
0(ζ) = ±χ0(ζ)

√

1− χ2
0(ζ)/2 . (A.239)

We infer that |χ0(ζ)| attains a local and global maximum with the value√
2 and that only the lower (minus) sign allows for a real-valued solution of

the above equation. Assuming, without loss of generality, χ0 to be strictly
positive, Eq. (A.239) is solved via

ζ − ζ0 =

∫ 1/χ0(ζ)

1/χ0(ζ0)

dx

x
√

1− x2/2
= arcosh

√
2

χ0(ζ)
− arcosh

√
2

χ0(ζ0)
. (A.240)

Identifying ζ0 with the global maximum of χ0, i.e., χ0(ζ0) =
√
2, we finally

obtain

χ0(ζ) =

√
2

cosh(ζ − ζ0)
, (A.241)

from which follows Eq. (4.42).

4.4 The scaling of the chemical potential µ with the population N of the con-
densate is determined from the normalization condition

∫

dDrn(r) = N ,
where the Thomas-Fermi approximation for the density is given by

n(r) =











1

gD

(

µ−
D
∑

j=1

1

2
mω2

j r
2
j

)

: µ >
∑D

j=1
1
2
mω2

j r
2
j

0 : otherwise

. (A.242)

Performing the change of integration variables rj 7→ ρj =
√

m/µωjrj, the
normalization condition is evaluated as

N =
µ

gD

√

µ

m

D

ω̄DI (A.243)

with

I =

∫

dDρ

(

1− 1

2

D
∑

j=1

ρ2j

)

θ

(

1− 1

2

D
∑

j=1

ρ2j

)

= Ω(D − 1)

∫

√
2

0

(1− ρ2/2)ρD−1dρ =
2D/2+1Ω(D − 1)

D(D + 2)
(A.244)

where

Ω(D − 1) =
2πD/2

Γ(D/2)
(A.245)
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is the area of the unit sphere in the D-dimensional space. This yields

N =
4
√
2π

D

D(D + 2)Γ(D/2)

µ1+D/2

gD(mω̄2)D/2
, (A.246)

from which follows

µ =

(

1

4
D(D + 2)Γ(D/2)NgD

)2/(2+D)(
mω̄2

2π

)D/(2+D)

. (A.247)

Particularizing for D = 1, 2, and 3 respectively yields

N =
4

3

µ3/2

g1
√

mω̄2/2
, (A.248)

N =
πµ2

g2mω̄2
, (A.249)

N =
8π

15

µ5/2

g3(mω̄2/2)3/2
, (A.250)

from which follow Eqs. (4.45)–(4.47).

4.5 We start by defining dimensionless coordinates ~ρ = ~r/a, a dimensionless
chemical potential µ̃ = 2ma2µ/~2, and a dimensionless condensate wave-
function

χ(~ρ) =

√

2mga2

~2
ψ(a~ρ) . (A.251)

Using

∆ψ(~r) =
1

a2

√

~2

2mga2
∆χ(~ρ) , (A.252)

the Gross-Pitaevskii equation (4.10) can be rewritten as

−∆χ(~ρ) + φ(~ρ)χ(~ρ) + |χ(~ρ)|2χ(~ρ) = µ̃χ(~ρ) . (A.253)

At fixed and finite ~ρ, for which φ(~ρ) would attain finite values as well,
the importance of the kinetic term can be neglected with respect to the
interaction term if

|χ(~ρ)|2 ≫ 1 . (A.254)

In that case, one would have χ(~ρ) ≃
√

µ̃− φ(~ρ) via the Thomas-Fermi ap-
proximation, with µ̃ ≫ φ(~ρ), and the application of the Laplacian would
yield ∆χ(~ρ) ≃ −∆φ(~ρ)/[2

√

µ̃− φ(~ρ)] ≃ −∆φ(~ρ)/[2
√
µ̃] in leading order,

giving rise to the importance hierarchy |∆χ(~ρ)| ≪ |φ(~ρ)|χ(~ρ) ≪ |χ(~ρ)|2χ(~ρ).
Using the definition (4.26) of the local healing length ξ(~r), with n(~r) =
|ψ(~r)|2, we can rewrite Eq. (A.251) as χ(~ρ) = a/ξ(a~ρ). The inequality
(A.254) is then equivalent to

ξ2(~r) ≪ a2 . (A.255)
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4.6 Let us start by defining a dimensionless interaction strength

η =
Ng

√
2π

3
~ωa3

=

√

2

π

Nas
a

(A.256)

and by introducing a dimensionless variational parameter x = b/a. Equa-
tion (4.29) is then rewritten as

EGP = N~ω

(

3

4
(x2 + x−2) +

η

2
x−3

)

≡ EGP(x) . (A.257)

Its first and second derivative with respect to x are evaluated as

E ′
GP(x) = N~ω

(

3

2
(x− x−3)− 3η

2
x−4

)

, (A.258)

E ′′
GP(x) = N~ω

(

3

2
(1 + 3x−4) + 6ηx−5

)

. (A.259)

At the critical value of Nas/a that is to be calculated, the local minimum
of EGP as a function of x turns into an inflection point. We thus have
E ′

GP(x) = 0 and E ′′
GP(x) = 0 at that particular point, and hence also

x5E ′′
GP(x) − x4E ′

GP(x) = 0. From that latter equation straightforwardly
follows x = −5η/4. The equation E ′

GP(−5η/4) = 0 can be rewritten as
55η4 = 44 and is solved by η = −4/55/4, taking into account that the
critical interaction strength has to be negative. This yields

Nas
a

= − 4

55/4

√

π

2
≃ −0.6705 (A.260)

as smallest value of the dimensionless interaction strength parameter for
which EGP exhibits a local minimum.

4.7 In one spatial dimension (assuming tight confinement in the other two per-
pendicular directions) the trial function to be used for applying the varia-
tional approach is given by

ψ
(b)
0 (x) =

√

N√
πb

exp

(

− x2

2b2

)

. (A.261)

Using
∫ ∞

−∞

∣

∣

∣

∣

d

dx
ψ

(b)
0 (x)

∣

∣

∣

∣

2

dx =
1

2b2
, (A.262)

∫ ∞

−∞
x2
∣

∣

∣
ψ

(b)
0 (x)

∣

∣

∣

2

dx =
b2

2
, (A.263)

∫ ∞

−∞

∣

∣

∣
ψ

(b)
0 (x)

∣

∣

∣

4

dx =
N2

√
2πb

, (A.264)
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the Gross-Pitaevskii energy functional for a one-dimensional condensate in
the presence of the (longtitudinal) confinement potential V (x) = 1

2
mω2x2

is evaluated as

EGP

[

ψ
(b)
0

]

=

∫ ∞

−∞

[

ψ
(b)∗
0 (x)

(

− ~2

2m

d2

dx2
+ V (x)

)

ψ
(b)
0 (x) +

g

2
|ψ(b)

0 (x)|4
]

dx

=
N~ω

4

(

a2

b2
+
b2

a2

)

+
N2

2

g
√
2π

3
b

(A.265)

with a =
√

~/(mω). Independently of the sign and the strength of g, this
expression diverges to EGP → +∞ for b → ∞ as well as for b → 0. The
existence of a local and global minimum at a finite value of b is thus granted
for all g, contrary to the situation in three spatial dimensions.


