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Chapter 5

Many-body quantum mechanics

5.1 The many-body space

We consider a quantum system with N indistinguishable particles. “Indistingush-
able” means that those particles exhibit identical properties. That is, they have
the same mass, the same spin, they experience the same mutual interaction, and
they display the same behaviour in the presence of an external force. N electrons
would constitute an example for a set of indistinguishable particles. The con-
cept of indistingushability, however, is not restricted to the realm of elementary
particles, but can also arise for composite particles. Hence, also N protons, of
which each one consists of two up quarks and one down quark, represent indis-
tinguishable particles, as well as N iron atoms 56Fe, to mention another example,
or N oxygene molecules O2. The “spin” degree of freedom associated with those
composite particles comprises then all possible internal excitations of those par-
ticles, such as electronic excitations in the case of atoms as well as electronic,
vibrational, and rotational excitations in the case of diatomic molecules. Note
that the choice of the isotope plays an important role for the notion of indistin-
gushability: A 57Fe atom is clearly distingushable from a 56Fe atom as it exhibits
a different mass, a different spin, and one more neutron in its nucleus.

As for any other many-particle or multi-component setting, the quantum
state of the system is described by a single complex wavefunction ψ which de-
pends on the individual spatial coordinates rn ∈ R

3 and spins σn ∈ I ⊂ 1
2
Z =

{0,±1
2
,±1,±3

2
, . . .} (e.g. σn ∈ {−1

2
, 1
2
} for electrons) of the particles which we

number by the index n = 1, . . . , N . Defining by ξn ≡ (rn, σn) the generalized
coordinates of particle number n, we can write the wavefunction of the quantum
system as

ψ ≡ ψ(ξ1, . . . , ξN) ≡ ψ(r1σ1, . . . , rNσN ) . (5.1)

|ψ(ξ1, . . . , ξN)|2 then represents the probability density to find particle 1 with
spin σ1 at position r1, particle 2 with spin σ2 at position r2, particle 3 with spin
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4 CHAPTER 5. MANY-BODY QUANTUM MECHANICS

σ3 at position r3, etc. The normalization of the probability density requires that
∫

dξ1 · · ·
∫

dξN |ψ(ξ1, . . . , ξN)|2 ≡
∫

d3r1
∑

σ1

· · ·
∫

d3rN
∑

σN

|ψ(r1σ1, . . . , rNσN)|2 = 1

(5.2)
where we define

∫
dξf(ξ) ≡∑σ

∫
d3rf(r, σ).

The Hilbert space H1 associated with one single particle is introduced as the
ensemble of all complex functions defined on R3 × I that are square integrable,
i.e.

H1 =

{

ψ : R3 × I → C, ξ ≡ (r, σ) 7→ ψ(ξ) ≡ ψ(r, σ) with

∫

dξ|ψ(ξ)|2 <∞
}

.

(5.3)
Within H1 we can introduce an orthonormal basis

B1 = (|φ0〉, |φ1〉, . . .) ≡ (|φk〉)k∈N0
(5.4)

consisting of wavefunctions φk ∈ H1 that satisfy the orthogonality relations

〈φk|φk′〉 =
∫

dξ〈φk|ξ〉〈ξ|φk′〉 =
∫

dξφ∗
k(ξ)φk′(ξ) = δkk′ (5.5)

for all k, k′ ∈ N0, where we identify 〈ξ|φ〉 ≡ φ(ξ). These basis states can be used
to represent operators A : H1 → H1 which correspond to linear transformations
ψ 7→ Aψ within H1. We can write

A =
∞∑

k,k′=0

Akk′|φk〉〈φk′| with Akk′ = 〈φk|A|φk′〉 . (5.6)

The Hilbert space describing N such particles is then given by the direct
product of N Hilbert spaces H1 and reads

HN = H1 × . . .×H1
︸ ︷︷ ︸

N times

= {ψ : (R3 × I)× . . .× (R3 × I) → C, (ξ1, . . . , ξN) 7→ ψ(ξ1, . . . , ξN)

with

∫

dξ1 · · ·
∫

dξN |ψ(ξ1, . . . , ξN)|2 <∞} . (5.7)

Using the elements |φk〉 of B1, we can construct an orthonormal basis BN of HN

through
BN = (|φk1φk2 · · ·φkN 〉)k1,...,kN∈N0

(5.8)

where we define

|φk1φk2 · · ·φkN 〉 ≡ |φk1〉|φk2〉 · · · |φkN 〉 and (5.9)

〈φk1φk2 · · ·φkN | ≡ 〈φkN | · · · 〈φk2|〈φk1| . (5.10)
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The orthogonality relations of those many-body basis states read

〈φk′1 · · ·φk′N |φk1 · · ·φkN 〉 =
(
〈φk′

N
| · · · 〈φk′1|

)
(|φk1〉 · · · |φkN 〉)

= 〈φk′1|φk1〉 · · · 〈φk′N |φkN 〉
= δk1k′1 · · · δkNk′N (5.11)

while the associated wavefunctions in the many-body coordinate space can be
expressed as

〈ξ1, . . . , ξN |φ1, . . . , φN〉 = φ1(ξ1) · · ·φN(ξN) . (5.12)

The concept of one-body operators can also be generalized for the many-
particle Hilbert space. In the case of indistinguishable particles, it makes sense
to introduce the total operator Â : HN → HN that is associated with a given
single-particle operator A1. The transformation ψ 7→ Âψ consists in summing up
the applications of A to each individual particle of the system. More quantita-
tively, the basis state |φk1φk2 · · ·φkN 〉 ≡ |φk1〉|φk2〉 · · · |φkN 〉 is transformed under

Â according to

Â|φk1〉|φk2〉|φk3〉 · · · |φkN−1
〉|φkN 〉 = |Aφk1〉|φk2〉|φk3〉 · · · |φkN−1

〉|φkN 〉
+ |φk1〉|Aφk2〉|φk3〉 · · · |φkN−1

〉|φkN 〉
+ . . .

+ |φk1〉|φk2〉|φk3〉 · · · |φkN−1
〉|AφkN 〉 .(5.13)

Using the representation (5.6) of A in the single-particle basis B1, we can write

Â =
∞∑

k1=0

· · ·
∞∑

kN=0

N∑

n=1

∞∑

k′n=0

Aknk′n |φk1 · · ·φkn−1φknφkn+1 · · ·φkN 〉〈φk1 · · ·φkn−1φk′nφkn+1 · · ·φkN | .

(5.14)
Let us consider as an example the kinetic energy of a quantum particle with

mass m. The associated one-body operator reads

T =
p2

2m
= − ~2

2m

∂2

∂r2
. (5.15)

According to the above prescription, the associated total operator in the Hilbert
space of N such particles is then simply given by the familiar expression for the
total kinetic energy

T̂ = − ~2

2m

(
∂2

∂r21
+ . . .+

∂2

∂r2N

)

(5.16)

of all particles. Indeed, this total kinetic energy (or equivalently, the average
kinetic energy per particle, corresponding to the operator T̂ /N) represents a

1Hats will, in the following, exclusively be used for operators that are defined within the
many-body space HN .



6 CHAPTER 5. MANY-BODY QUANTUM MECHANICS

measurable observable in a system of N identical particles, while the individ-
ual kinetic energy of, say, particle number 3 has no physical meaning as it is
practically impossible in an experiment to tag individual number labels to those
particles. This latter consideration leads to the statement that those particles
are essentially identical.

5.2 The symmetry postulate

In view of this latter observation, we can now formulate the symmetry postulate
for a system of indistinguishable quantum particles. Colloquially speaking, it
implies that all those particles have to be treated in an identical manner, not
only from the point of view of physical observables, but also on the level of the
wavefunction of the system.

To this end, we start by noting that a system of N indistinguishable particles
is characterized by possessing a Hamiltonian that is invariant under permutations
of individual particles. As an example, let us consider a system of N particles
with mass m that are subject to the external potential V (r) and interact with
each other via the two-body interaction potential U(r, r′) ≡ U(r − r′) which
depends only on the distance |r − r′| between the particles. The corresponding
many-body Hamiltonian reads

Ĥ ≡ Ĥ(p1, r1, . . . ,pN , rN) =
N∑

n=1

(
p2
n

2m
+ V (rn)

)

+
1

2

N∑

n 6=n′=1

U(rn − rn′) . (5.17)

Clearly, Ĥ is invariant with respect to any permutation of the particles. We have
for instance Ĥ(p1, r1,p2, r2, . . . ,pN , rN) = Ĥ(pN , rN , . . . ,p2, r2,p1, r1).

On a more formal level, Ĥ commutes with any operator Π̂nn′ that exchanges
two particles in the wavefunction. We name Π̂nn′ transposition operator in the
following, and it is defined through

(

Π̂nn′ψ
)

(ξ1, . . . , ξn, . . . , ξn′, . . . , ξN) = ψ(ξ1, . . . , ξn′, . . . , ξn, . . . , ξN) (5.18)

for n, n′ = 1, . . . , N . Obviously we have Π̂nn′ = Π̂n′n = Π̂†
nn′ and Π̂2

nn′ = I. This

means that Π̂nn′ is both hermitian and unitary, and its eigenvalues are ±1. The
associated eigenfunctions satisfy

ψ(ξ1, . . . , ξn, . . . , ξn′, . . . , ξN) = ±ψ(ξ1, . . . , ξn′, . . . , ξn, . . . , ξN) , (5.19)

i.e., they are symmetric (for the eigenvalue +1) or antisymmetric (for the eigen-
value −1) with respect to the exchange of the coordinates ξn and ξn′.

Since [Ĥ, Π̂nn′] = 0 for all n, n′ = 1, . . . , N , it is natural to speculate about
choosing a common eigenbasis of all Π̂nn′ in which the many-body Hamiltonian



5.2. THE SYMMETRY POSTULATE 7

is to be diagonalized. In general, however, the transposition operators do not
commute with each other. This can be explicitly worked out for the specific case
of the operators Π̂12 and Π̂23. We have
(

Π̂12Π̂23ψ
)

(ξ1, ξ2, ξ3, . . .) =
(

Π̂23ψ
)

(ξ2, ξ1, ξ3, . . .) = ψ(ξ2, ξ3, ξ1, . . .) (5.20)

and
(

Π̂23Π̂12ψ
)

(ξ1, ξ2, ξ3, . . .) =
(

Π̂12ψ
)

(ξ1, ξ3, ξ2, . . .) = ψ(ξ3, ξ1, ξ2, . . .) (5.21)

for any wavefunction ψ ∈ HN . Hence, in order for Π̂12Π̂23ψ = Π̂23Π̂12ψ to hold
(and in order for Π̂12Π̂13ψ = Π̂13Π̂12ψ and Π̂13Π̂23ψ = Π̂23Π̂13ψ to hold as well)
we need to require that ψ is either entirely symmetric or entirely antisymmetric

in its first three coordinates ξ1, ξ2, ξ3. That is, ψ has to be common eigenfunction
of all Π̂nn′ with n, n′ = 1, 2, 3, with eigenvalues that can be either +1 for all Π̂nn′

or −1 for all Π̂nn′. A “mixed” choice for the eigenvalues of ψ, e.g. Π̂12ψ = ψ and
Π̂23ψ = −ψ, is not possible and would lead to a contradiction, since in that case it
would not be possible to specify how the operator Π̂13 = Π̂12Π̂23Π̂12 = Π̂23Π̂12Π̂23

acts on ψ.
This reasoning can be generalized for the other transposition operators as

well. We thereby arrive at the conclusion that the transposition operators Π̂nn′

commute with each other only within the two orthogonal subspaces

H±
N =

{

ψ ∈ HN : Π̂nn′ψ = ±ψ for all n, n′ = 1, . . . , N
}

(5.22)

of the Hilbert space HN , which contain those wavefunctions ψ that are entirely
symmetric (H+

N ) or entirely antisymmetric (H−
N) with respect to the exchange of

two particles. As a consequence, since [Ĥ, Π̂nn′] = 0 for all n, n′ = 1, . . . , N ,
the Hamiltonian Ĥ as well as the time evolution operator exp(−itĤ/~) (or
T exp[−i

∫ t

0
Ĥ(t′)dt′/~] for explicitly time-dependent Hamiltonians Ĥ ≡ Ĥ(t),

with T the time-ordering operator) represent endomorphisms within the sub-
spaces H±

N , i.e. they map an element of H±
N to another element of H±

N . Hence,
a many-body wavefunction that is initially entirely symmetric (or entirely an-
tisymmetric) with respect to the exchange of particles will keep this particular
property in the course of the time evolution generated by the Hamiltonian Ĥ.

The symmetry postulate can now be formulated by stating that physically
relevant quantum states describing a system of N identical particles are either

elements of H+
N or elements of H−

N . That is, the wavefunction of such a system is
either entirely symmetric or entirely antisymmetric with respect to the exchange
of the spatial coordinates and spins within any pair of two particles. In the for-
mer, symmetric case, those particles are named bosons or bosonic particles, while
in the latter, antisymmetric case we are talking about fermions or fermionic

particles. Obviously, physically relevant observables must correspond to total op-

erators which commute with all transposition operators Π̂nn′ for n, n′ = 1, . . . , N .
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Indeed, it must not be possible to break the symmetry or antisymmetry of the
wavefunction by the projection process that happens in the course of a quantum
measurement associated with such an observable.

5.3 Construction of a symmetric or antisym-

metric basis

Having defined the symmetric and antisymmetric subspaces H±
N of the N -particle

Hilbert space HN , we now address the problem of constructing an orthonormal
basis B±

N within H±
N using the one-body states |φk〉 of the basis (5.4) within the

single-particle Hilbert space H1. It seems obvious that one should take for this
purpose the many-particle basis states |φk1 · · ·φkN 〉 ∈ BN , defined in Eqs. (5.9)
and (5.10), and symmetrize or antisymmetrize them properly. It is less obvious,
however, how to avoid multiple counting of identical basis states in the course of
this procedure, and how to correctly normalize the resulting basis states.

Let us first consider the relatively easy case of N = 2 particles. The two-
particle Hilbert space H2 is spanned by the basis B2 = (|φk1φk2〉)k1,k2∈N0 with
|φk1φk2〉 ≡ |φk1〉|φk2〉. Symmetrizing and antisymmetrizing yields the basis states

|φ±
k1k2

〉 = A±
k1k2

(|φk1φk2〉 ± |φk2φk1〉) (5.23)

for the symmetric and antisymmetric subspaces H±
2 , respectively. While the

orthogonality between different basis states |φ±
k1k2

〉 is granted, double counting
of identical states (or, more generally, of states that are identical up to a global
sign) has to be avoided, e.g., by imposing that k2 must not be larger than k1. We
therefore require k2 ≤ k1 for the definition of |φ+

k1k2
〉 as well as k2 < k1 for the

definition of |φ−
k1k2

〉. Indeed, the case k1 = k2 does not make any sense for the
basis functions of H−

2 as one would have |φ−
k1k1

〉 = 0 from Eq. (5.23). In other
words, two fermionic particles cannot share the same single-particle state |φk1〉.

With this additional requirement, and using the orthogonality and normal-
ization of the single-particle states |φk〉, we obtain

〈φ+
k1k2

|φ+
k′1k

′

2
〉 = 2(A+

k1k2
)∗A+

k′1k
′

2
δk1k′1δk2k′2(1 + δk1k2) , (5.24)

〈φ−
k1k2

|φ−
k′1k

′

2
〉 = 2(A−

k1k2
)∗A−

k′1k
′

2
δk1k′1δk2k′2 . (5.25)

The normalization condition 〈φ±
k1k2

|φ±
k′1k

′

2
〉 = δk1k′1δk2k′2 then leads to the choice

A±
k1k2

= 1/
√
2 for k1 > k2 as well as A+

k1k1
= 1/2 in the special case of bosons.

We therefore obtain the orthogonal and normalized basis states

|φ±
k1k2

〉 = 1√
2
(|φk1φk2〉 ± |φk2φk1〉) (5.26)
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for k1, k2 ∈ N0 with k1 > k2 as well as

|φ+
kk〉 = |φkφk〉 (5.27)

for k ∈ N0 in the case of bosons.
The case of N = 3 particles can be treated in perfect analogy. We obtain

|φ±
k1k2k3

〉 =
1√
6
(|φk1φk2φk3〉+ |φk2φk3φk1〉+ |φk3φk1φk2〉

±|φk2φk1φk3〉 ± |φk3φk2φk1〉 ± |φk1φk3φk2〉) (5.28)

as basis states within H±
3 for k1, k2, k3 ∈ N0 with k1 > k2 > k3. For the special

case of bosons, we have, in addition, also the basis states

|φ+
k1k1k2

〉 =
1√
3
(|φk1φk1φk2〉+ |φk1φk2φk1〉+ |φk2φk1φk1〉) , (5.29)

|φ+
k1k2k2

〉 =
1√
3
(|φk1φk2φk2〉+ |φk2φk1φk2〉+ |φk2φk2φk1〉) (5.30)

for k1, k2 ∈ N0 with k1 > k2 as well as

|φ+
kkk〉 = |φkφkφk〉 (5.31)

for k ∈ N0.
In order to generalize for the case of N > 3 particles, we need to introduce the

concept of permutations. In most general terms, a permutation is an invertible
transformation that maps elements of a finite set onto each other. For the specific
case of the set of integers {1, . . . , N}, we can define the set of permutations that
act upon {1, . . . , N} as

ΠN = {π : {1, . . . , N} → {1, . . . , N}, n 7→ π(n) with the property:

π(n) = π(n′) if and only if n = n′ for all n, n′ = 1, . . . , N} .(5.32)

Clearly, ΠN represents a group since the combination π ◦ π′ of two permutations
π, π′ ∈ ΠN , defined through (π ◦ π′)(n) = π(π′(n)) for all n ∈ {1, . . . , N}, is also
an element of ΠN . By definition, there exists an inverse permutation π−1 ∈ ΠN

to each π ∈ ΠN such that π−1 ◦ π is the identity element of ΠN that maps each
number n ∈ {1, . . . , N} onto itself.

One can show that ΠN consists of N ! different elements, i.e., there are N ! dif-
ferent possibilities to permute the numbers 1, . . . , N . One can furthermore show
that each permutation π ∈ ΠN can be represented as a sequence of individual
transpositions πij ∈ ΠN that exchange two numbers i, j ∈ {1, . . . , N} and map
the other numbers within {1, . . . , N} onto themselves. We can therefore write

π = πi1j1 ◦ πi2j2 ◦ . . . ◦ πiM jM (5.33)
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using a sequence of transpositions πimjm ∈ ΠN with m = 1, . . . ,M . Note that
neither the choice of the transpositions πimjm that are used to represent π nor
even their number M are uniquely defined for a given permutation π ∈ ΠN .
Indeed, the permutation π that exchanges the numbers 1 and 3 while mapping
the other numbers onto themselves can obviously be expressed as π = π13, but
also, as was already mentioned in the previous section 5.2, as π = π12π23π12 or
π = π23π12π23 or π = π12π23π12π13π13, to mention some examples.

Note, however, that it is not possible to represent the above permutation π13
by an even number of transpositions. On a more general level, a remarkable
property of permutations is that the number M of transpositions used in a rep-
resentation (5.33) of a given permutation π ∈ ΠN is either even for all possible
representations, in which case π is said to be an even permutation, or odd for
all possible representations, in which case π is said to be an odd permutation.
We can therefore associate with each permutation π ∈ ΠN a well-defined parity
which is independent of its specific representation in terms of transpositions, and
which can be expressed through the introduction of the sign or signature

(−1)π ≡
N∏

n=2

n−1∏

n′=1

π(n)− π(n′)

n− n′
= (−1)M =

{
+1 : π is an even permutation
−1 : π is an odd permutation

(5.34)
of the permutation π.

We are now in a position to express the entirely symmetric and antisymmetric
basis states |φ±

k1...kN
〉 within H±

N in terms of sums over permutations of the quan-
tum numbers k1, . . . , kN . Defining by convention (+1)π ≡ 1 for each π ∈ ΠN , we
write

|φ±
k1···kN

〉 = A±
k1···kN

∑

π∈ΠN

(±1)π|φkπ(1)
· · ·φkπ(N)

〉 (5.35)

for bosons (+) and fermions (−). The associated wavefunction reads

〈ξ1 · · · ξN |φ±
k1···kN

〉 = A±
k1···kN

∑

π∈ΠN

(±1)πφkπ(1)
(ξ1) · · ·φkπ(N)

(ξN) . (5.36)

To avoid double counting, we require k1 ≥ k2 ≥ . . . ≥ kN for bosons as well as
k1 > k2 > . . . > kN for fermions. The normalization condition

〈φ±
k1···kN

|φ±
k′1···k

′

N

〉 = δk1k′1 · · · δkNk′N (5.37)

is then satisfied in the case of fermions if we choose A−
k1···kN

= 1/
√
N ! for all

k1, . . . , kN ∈ N0. We can then express the fermionic many-body wavefunction in
terms of the determinant of a N ×N complex matrix, namely through

〈ξ1 · · · ξN |φ−
k1···kN

〉 = 1√
N !

∣
∣
∣
∣
∣
∣
∣

φk1(ξ1) · · · φkN (ξ1)
...

...
φk1(ξN) · · · φkN (ξN)

∣
∣
∣
∣
∣
∣
∣

, (5.38)



5.3. CONSTRUCTION OF A SYMMETRIC OR ANTISYMMETRIC BASIS11

which is also named Slater determinant.
In the case of bosons, we have to account for possible multiple appearances

of a given single-particle state |φk〉 within |φk1 · · ·φkN 〉. To this end, we define by
nk ∈ {0, 1, . . . , N} the number of times that the integer k appears within the set
{k1, . . . , kN}. We can then choose

A+
k1···kN

=
1

√

N !
∏∞

k=0 nk!
=

1√
N !n0!n1!n2! · · ·

(5.39)

in order to satisfy the normalization condition (5.37). As 0! = 1! = 1, we would
recover the same choice as for fermions, A+

k1···kN
= 1/

√
N !, in the special case

k1 > k2 > . . . > kN , while for the opposite case k1 = k2 = . . . = kN we would
have nk1 = N and thereby A+

k1···kN
= 1/N !, which correctly accounts for the

fact that N ! identical terms |φk1 · · ·φk1〉 would, in that case, be summed in the
expression (5.35).

Observing that in the case of fermions we would have nk = 0 or 1 and hence
nk! = 1 for all k ∈ N0, we can finally express the correctly normalized basis states
within H±

N as

|φ±
k1···kN

〉 = 1
√

N !
∏∞

k=0 nk!

∑

π∈ΠN

(±1)π|φkπ(1)
· · ·φkπ(N)

〉 (5.40)

for bosons as well as for fermions. An immediate consequence of this form of
the basis states in the case of fermions is the Pauli exclusion principle which
states that it is impossible for two or more identical fermions to occupy the same
single-particle state |φ〉 or to be measured with the same generalized coordinates
ξ ≡ (r, σ), i.e., with the same spin σ at the same place r. Indeed, the Slater
determinant (5.38) would, in those two cases, obviously be identical to zero.

Let us finally address the question how to represent physically relevant oper-
ators within this symmetrized or antisymmetrized basis. As was already stated
in Eq. (5.6), one-body operators A : H1 → H1 are represented within the single-
particle basis B1 = (|φk〉)k∈N0

according to

A =
∞∑

k,k′=0

Akk′Pkk′ (5.41)

with Akk′ = 〈φk|A|φk′〉 where we define the (in general non-hermitian) one-body
operator

Pkk′ = |φk〉〈φk′| . (5.42)

The associated total operator in the many-body space can then be written as

Â =
∞∑

k,k′=0

Akk′P̂kk′ (5.43)
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where P̂kk′ represents the many-body equivalent of Pkk′. In analogy with Eq. (5.14)
we obtain

P̂kk′|φk1 · · ·φkN 〉 =
N∑

n=1

δk′kn|φk1 · · ·φkn−1φkφkn+1 · · ·φkN 〉 (5.44)

and hence

P̂kk′|φ±
k1···kN

〉 = 1
√

N !
∏∞

k=0 nk!

∑

π∈ΠN

(±1)π
N∑

n=1

δk′kπ(n)
|φkπ(1)

· · ·φkπ(n−1)
φkφkπ(n+1)

· · ·φkπ(N)
〉 .

(5.45)
Therefore, P̂kk′|φ±

k1···kN
〉 = 0 if k′ /∈ {k1, . . . , kN}, while otherwise, if k′ = kn for a

n ∈ {1, . . . , N}, we have

P̂kk′|φ±
k1···kN

〉 = α±
kk′|φ±

k1···kn−1kn+1···kνkkν+1···kN
〉 (5.46)

for some prefactor α±
kk′, where the index ν is determined such that kν ≥ k ≥ kν+1

2.
In the case of bosons, the precise ordering of the quantum numbers is, in

practice, not relevant as the basis states of the bosonic subspace are entirely
symmetric. However, we do have to take into account the possibility of multiple
appearances of the quantum number k′ within {k1, . . . , kN}, which would give
rise to multiple, namely nk′, possibilities of replacing φk′ by φk in the sum over
n on the right-hand side of Eq. (5.45). nk′ is consequently decremented by 1
after this replacement, and nk is incremented by 1, which in turn gives rise to
different normalization prefactors of the basis state. We therefore have to choose
the prefactor in Eq. (5.46) as

α+
kk′ = nk′

√

(nk′ − 1)!

nk′!

√

(nk + 1)!

nk!
=
√

nk′(nk + 1) . (5.47)

In the fermionic case, the normalization prefactor 1/
√
N ! of the basis state

is not affected by the replacement of φk′ by φk. However, we have pay attention
to the fact that P̂kk′|φ±

k1···kN
〉 = 0 if k = kν 6= k′ for a ν ∈ {1, . . . , N}, due to

the Pauli principle. Moreover, we have to take into account that the necessary
re-ordering of the quantum numbers k1 > . . . > kN after the replacement of k′

by k might involve a sign change, corresponding to the sign of the permutation
that performs this re-ordering, when we want to express the right-hand side of
Eq. (5.45) in terms of the (properly ordered) many-body basis state |φ±

k1···k···kN
〉.

To account for this sign change as well as for the Pauli principle, we choose the
prefactor in Eq. (5.46) as

α−
kk′ = nk′(1−nk)(−1)n0+n1+...+nk′−1(−1)n0+n1+...+nk−1 = nk′(1−nk)(−1)N (5.48)

2Obviously, in the presentation of Eq. (5.46) it is specifically assumed that k > k′. The
reasoning is, of course, more general and holds also if k ≤ k′.
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noting that nk, nk′ ∈ {0, 1}, with N = nk′ + . . . + nk−1 in the special case
k′ < k (and similarly for k′ > k) corresponding to the number of nearest-
neighbour transpositions that are needed for the re-ordering of the quantum
numbers k1, . . . , k, . . . , kN .

5.4 The Fock space

Instead of elaborating along the above lines how to represent the operator Â
within the symmetric or antisymmetric basis B±

N , we shall now introduce a frame-
work that strongly facilitates such representations. To this end, we first introduce
a new notation for the basis states of B±

N , namely

|φ±
k1···kN

〉 ≡ |n0, n1, n2, . . .〉± (5.49)

where nk is, as defined above, the occupation number of the individual single-
particle basis state |φk〉 ∈ B1. Clearly, a given symmetric or antisymmetric
many-body basis state |φ±

k1···kN
〉 corresponds to a well-defined and unique set of

occupation numbers n0, n1, n2, . . . ∈ N0 for bosons and n0, n1, n2, . . . ∈ {0, 1}
for fermions. Conversely, each combination of occupation numbers n0, n1, n2, . . .
corresponds to a well-defined bosonic or fermionic (the latter only if nk ∈ {0, 1}
for all k) basis state |φ±

k1···kN
〉 ∈ B±

N with N =
∑∞

k=0 nk. The state |n0, n1, n2, . . .〉±
will be named Fock state (with respect to a given single-particle basis B1 =
(|φ0〉, |φ1〉, |φ2〉, . . .)) in the following.

We then define the Fock space for bosons or fermions,

H± =
∞⊕

N=0

H±
N = H0 ⊕H1 ⊕H±

2 ⊕H±
3 ⊕ . . . , (5.50)

as the direct sum of the individual symmetric or antisymmetric Hilbert spaces
H±
N for all possible particle numbers N ∈ N0. This Fock space is spanned by the

union set

B± =
∞⋃

N=0

B±
N = B0 ∪ B1 ∪ B±

2 ∪ B±
3 ∪ . . . (5.51)

of the individual symmetric or antisymmetric bases

B±
N =

(

|n0, n1, n2, . . .〉± :
∞∑

k=0

nk = N

)

. (5.52)

We then obtain

B+ = (|n0, n1, n2, . . .〉+ : nk ∈ N0 for all k ∈ N0) , (5.53)

B− = (|n0, n1, n2, . . .〉− : nk ∈ {0, 1} for all k ∈ N0) (5.54)
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as orthonormal bases for H+ and H−, respectively, with

±〈n0, n1, n2, . . . |n′
0, n

′
1, n

′
2, . . .〉± = δn0n′

0
δn1n′

1
δn2n′

2
· · · . (5.55)

Obviously, symmetrization or antisymmetrization is not explicitly needed if there
are less than two particles; hence B+

N = B−
N ≡ BN andH+

N = H−
N ≡ HN for N = 0

or 1. The space H0 is special as it is spanned by one single basis state

|−〉 ≡ |0, 0, 0, . . .〉 ∈ B0 (5.56)

of abstract nature (without an associated wavefunction), which corresponds to
the absence of particles in the system. It will be named vacuum state in the
following.

Within the Fock space H± we can now introduce for each single-particle basis
state |φk〉 so-called creation and annihilation operators â†k, âk, which allow us to
represent the many-body equivalent of the one-body operator Pkk′ = |φk〉〈φk′| (see
Eq. (5.42)) as P̂kk′ = â†kâk. For bosons, those new operators are, in accordance
with Eqs. (5.46) and (5.47), defined through

âk|n0, n1, . . . , nk, . . .〉+ =
√
nk|n0, n1, . . . , nk − 1, . . .〉+ , (5.57)

â†k|n0, n1, . . . , nk, . . .〉+ =
√
nk + 1|n0, n1, . . . , nk + 1, . . .〉+ (5.58)

for each Fock state |n0, n1, . . . , nk, . . .〉+ ∈ B+. Clearly, â†k is the adjoint operator
of âk as we have

+〈n0, . . . , nk, . . . |â†k|n′
0, . . . , n

′
k, . . .〉+ =

√

n′
k + 1δnk,n

′

k
+1

∏

k′ 6=k

δn′

k′
n
k′

= +〈n′
0, . . . , n

′
k, . . . |âk|n0, . . . , nk, . . .〉∗+ =

√
nkδn′

k
,nk−1

∏

k′ 6=k

δn′

k′
n
k′

(5.59)

for all |n0, . . . , nk, . . .〉+, |n′
0, . . . , n

′
k, . . .〉+ ∈ B+. If nk = 0, we obtain from

Eq. (5.57) âk|n0, . . . , nk = 0, . . .〉+ = 0 which corresponds to the null vector
of H+ (which is not to be confused with the vacuum state |0, 0, 0, . . .〉). Formally,
therefore, â†k creates an additional particle within the one-body basis state |φk〉,
while âk removes or annihilates a particle within that state. These two operations
do not commute. Indeed, we have

â†kâk|n0, . . . , nk, . . .〉+ = nk|n0, . . . , nk, . . .〉+ , (5.60)

âkâ
†
k|n0, . . . , nk, . . .〉+ = (nk + 1)|n0, . . . , nk, . . .〉+ , (5.61)

which after subtraction yields âkâ
†
k − â†kâk = 1 (i.e. the identity transformation)

for all k ∈ N0.
In the case of fermions3, we define in accordance with Eqs. (5.46) and (5.48)

âk|n0, . . . , nk, . . .〉− = (−1)n0+...+nk−1nk|n0, . . . , nk − 1, . . .〉− , (5.62)

â†k|n0, . . . , nk, . . .〉− = (−1)n0+...+nk−1(1− nk)|n0, . . . , nk + 1, . . .〉− ,(5.63)
3In order not to overload the notation, we do make any distinction in the choice of the

symbols â†
k
, âk for the creation and annihilation operators in the case of bosons or fermions.
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which yields âk|n0, . . . , nk = 0, . . .〉− = 0 and â†k|n0, . . . , nk = 1, . . .〉− = 0. We
have

â†kâk|n0, . . . , nk, . . .〉− = nk|n0, . . . , nk, . . .〉− , (5.64)

âkâ
†
k|n0, . . . , nk, . . .〉− = (1− nk)|n0, . . . , nk, . . .〉− , (5.65)

which after summation yields âkâ
†
k+ â†kâk = 1 for all k ∈ N0. Again, the creation

and annihilation operators do not commute. In contrast to the bosonic case,
this now holds true also for operators â†k, âk′ that are associated with different
quantum numbers k′ 6= k. Considering, without loss of generality, the case k′ > k,
we have

â†kâk′| . . . , nk, . . . , nk′, . . .〉− = (−1)nk+...+nk′−1| . . . , nk+1, . . . , nk′−1, . . .〉− (5.66)

whereas on the other hand

âk′ â
†
k| . . . , nk, . . . , nk′, . . .〉− = (−1)(nk+1)+...+n

k′−1 | . . . , nk + 1, . . . , nk′ − 1, . . .〉−
= −â†kâk′ | . . . , nk, . . . , nk′, . . .〉− , (5.67)

which yields âk′ â
†
k + â†kâk′ = 0. Analogous anticommutation relations can be

derived in a very similar manner for two creation operators â†k, â
†
k′ as well as for

two annihilation operators âk, âk′. In particular, we have âkâk = â†kâ
†
k = 0 for all

k ∈ N0, which implies that it is not possible to create more than one fermionic
particle in the same single-particle state |φk〉.

Altogether, we then obtain the commutation as well as anticommutation laws

[âk, â
†
k′]∓ = δkk′ , (5.68)

[âk, âk′]∓ = [â†k, â
†
k′]∓ = 0 (5.69)

for all k, k′ ∈ N0 in the case of bosons (upper sign) and fermions (lower sign),
where we define by

[A,B]− ≡ [A,B] = AB − BA , (5.70)

[A,B]+ ≡ {A,B} = AB +BA (5.71)

the commutator as well as the anticommutator, respectively, of two operators A
and B. In both the bosonic and the fermionic case, the creation operators â†k can
be used in order to generate the Fock states associated with the corresponding
single-particle basis B1. We obtain

|n0, n1, n2, . . .〉 =
1√
n0!

(

â†0

)n0 1√
n1!

(

â†1

)n1 1√
n2!

(

â†2

)n2

. . . |−〉 (5.72)

where |−〉 represents the vacuum as defined in Eq. (5.56).
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Using Eq. (5.43) as well as P̂kk′ = â†kâk′, we are now in a position to represent
the many-body equivalent associated with the one-body operator A : H1 → H1

for both bosons and fermions as

Â =
∞∑

k,k′=0

Akk′â
†
kâk′ (5.73)

with Akk′ = 〈φk|A|φk′〉. The combination of one creation with one annihilation
operator within Eq. (5.73) ensures that Â does not change the total number of
particles when being applied to a Fock state. Â therefore represents an endomor-
phism within the subspaces H±

N of the Fock space, in contrast to âk and â
†
k which

transform an element of H±
N to H±

N−1 and H±
N+1, respectively. A particularly rel-

evant one-body operator is the projector Pkk = |φk〉〈φk| onto the single-particle
state φk. Its many-body equivalent n̂k ≡ P̂kk = â†kâk is named occupation number

operator associated with |φk〉, since its eigenvalues are, for both bosons (5.60)
and fermions (5.64), given by the occupation numbers nk of the state |φk〉. The
sum N̂ =

∑

k n̂k of those occupation number operators yields the total number
of particles N in the system, independently of the chosen single-particle basis B1.

The concept of total operators within a many-particle space can be applied
also for two-body operators B : H2 → H2. A prominent physical example is
the electrostatic interaction energy of two electrons, whose associated two-body
operator reads

U(r1, r2) =
e2

4πǫ0|r1 − r2|
(5.74)

in position representation, with r1 and r2 denoting the positions of two interacting
electrons. It is well known that the total electrostatic interaction energy of a
system of N electron situated at the positions r1, . . . , rN is then given by

U(r1, . . . , rN) =
1

2

N∑

i 6=j=1

U(ri, rj) =
1

2

N∑

i 6=j=1

e2

4πǫ0|ri − rj |
(5.75)

where the factor 1/2 in Eq. (5.75) in introduced in order to avoid double countings
of pairs of electrons.

Most generally, we can represent a two-body operator B within the single-
particle basis B1 as

B =

∞∑

k1,k′1=0

∞∑

k2,k′2=0

Bk1k2k′1k
′

2
|φk1φk2〉〈φk′1φk′2| (5.76)

with Bk1k2k′1k
′

2
= 〈φk1φk2|B|φk′1φk′2〉 = Bk2k1k′2k

′

1
for indistinguishable particles.

The associated total operator in the Fock space can then be shown to be given
by

B̂ =
1

2

∞∑

k1,k′1=0

∞∑

k2,k′2=0

Bk1k2k′1k
′

2
â†k1 â

†
k2
âk′2âk′1 (5.77)
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for both bosons and fermions. Similarly, three-body operators C : H3 → H3

given by

C =

∞∑

k1,k′1=0

∞∑

k2,k′2=0

∞∑

k3,k′3=0

Ck1k2k3k′1k′2k′3 |φk1φk2φk3〉〈φk′1φk′2φk′3| (5.78)

with Ck1k2k3k′1k′2k′3 = 〈φk1φk2φk3|C|φk′1φk′2φk′3〉 are represented in the Fock space
through their associated total operators

Ĉ =
1

3!

∞∑

k1,k′1=0

∞∑

k2,k′2=0

∞∑

k3,k′3=0

Ck1k2k3k′1k′2k′3â
†
k1
â†k2 â

†
k3
âk′3 âk′2 âk′1 , (5.79)

where the prefactor 1/3! accounts for multiple countings of triples of particles.

5.5 The field operator

Evidently, the notion of Fock states, given by Eq. (5.49), as well as the definition
of the associated creation and annihilation operators are intimately linked to a
specific choice for the single-particle basis B1. Changing this basis will necessarily
give rise to different creation and annihilation operators and thereby also, by
virtue of Eq. (5.72), to different Fock states.

Let us specifically introduce by

B′
1 = (|χl〉)l∈N0

= (|χ0〉, |χ1〉, |χ2〉, . . .) (5.80)

another orthonormal basis of H1. The new basis states can be represented within
the old basis B1 = (|φk〉) through

|χl〉 =
∞∑

k=0

Ukl|φk〉 (5.81)

with the overlap matrix elements

Ukl = 〈φk|χl〉 . (5.82)

As both B1 and B′
1 are orthonormal bases, we have 〈φk|φk′〉 = δkk′ and 〈χl|χl′〉 =

δll′ which implies
∞∑

k=0

U∗
klUkl′ = δll′ , (5.83)

i.e., the transformation matrix U ≡ (Ukl)k,l∈N0 = (U †)−1 is unitary. We can
therefore invert the basis transformation (5.81) by

|φk〉 =
∞∑

l=0

U∗
kl|χl〉 (5.84)



18 CHAPTER 5. MANY-BODY QUANTUM MECHANICS

and obtain likewise
∞∑

l=0

UklU
∗
k′l = δkk′ . (5.85)

Using this new basis B′
1, the fully symmetrized and antisymmetrized basis

states of the bosonic and fermionic Hilbert spaces H±
N can, in perfect analogy

with Eqs. (5.40), (5.49), and (5.72), be expressed as

|χ±
l1···lN

〉 =
1

√

N !
∏∞

l=0 νl!

∑

π∈ΠN

(±1)π|χlπ(1)
· · ·χlπ(N)

〉 (5.86)

= |ν0, ν1, ν2, . . .〉 (5.87)

=
1√
ν0!

(

b̂†0

)ν0 1√
ν1!

(

b̂†1

)ν1 1√
ν2!

(

b̂†2

)ν2
. . . |−〉 (5.88)

with νl ∈ N0 for bosons and νl ∈ {0, 1} for fermions being the occupation num-
ber of the single-particle state |χl〉. b̂†l and b̂l are the creation and annihilation
operators associated with the state |χl〉 which are defined in perfect analogy with
Eqs. (5.57) and (5.58) for bosons and with Eqs. (5.62) and (5.63) for fermions.
Comparing the expressions (5.88) and (5.72) for the special case of one single par-
ticle with the relations (5.81) and (5.84) between the old and new basis states,
we immediately infer

b̂†l =

∞∑

k=0

Uklâ
†
k or, equivalently, b̂l =

∞∑

k=0

U∗
klâk (5.89)

as well as

â†k =
∞∑

l=0

U∗
klb̂

†
l or, equivalently, âk =

∞∑

l=0

Uklb̂l . (5.90)

One-body operators A : H1 → H1 are then represented as

Â =
∞∑

k,k′=0

〈φk|A|φk′〉â†kâk′ =
∞∑

l,l′=0

〈χl|A|χl′〉b̂†l b̂l′ (5.91)

in the Fock space. By virtue of the unitarity of the basis transformation expressed
by Eq. (5.83), we then obtain the same commutation or anticommutation laws,

[b̂l, b̂
†
l′ ]∓ = δll′ , (5.92)

[b̂l, b̂l′ ]∓ = [b̂†l , b̂
†
l′ ]∓ = 0 , (5.93)

as for the old creation and annihilation operators â†k, âk.
We now consider the continuous single-particle basis

B̃1 = (|ξ〉) ≡ (|rσ〉)
r∈R3,σ∈I (5.94)
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which contains the eigenstates |ξ〉 ≡ |rσ〉 of the position and spin operators.
The continuous analog of the overlap matrix elements U∗

kl is now given by the
wavefunctions φk(rσ) ≡ 〈rσ|φk〉 that are associated with the states |φk〉. In
analogy with Eqs. (5.81) and (5.84), the transformations between the discrete
basis B1 and the continuous basis B̃1 are expressed through the relations

|rσ〉 =

∞∑

k=0

φ∗
k(rσ)|φk〉 , (5.95)

|φk〉 =
∑

σ∈I

∫

d3rφk(rσ)|rσ〉 . (5.96)

The orthogonality relations (5.83) and (5.85) now read

∞∑

k=0

φkrσ)φ
∗
k(r

′σ′) = δσσ′δ(r− r′) , (5.97)

∑

σ∈I

∫

d3rφ∗
k(rσ)φk′(rσ) = δkk′ , (5.98)

respectively, i.e. they describe the orthogonality (5.98) and completeness (5.97)
of the single-particle basis B1.

The field operators are now introduced as the creation and annihilation opera-
tors ψ̂†

σ(r), ψ̂σ(r) that are associated with this continuous basis B̃1. ψ̂
†
σ(r) creates

a particle with spin σ at position r, while ψ̂σ(r) annihilates such a particle at r.
In analogy with Eq. (5.89), we can define these operators through

ψ̂σ(r) =
∞∑

k=0

φk(rσ)âk or, equivalently, ψ̂†
σ(r) =

∞∑

k=0

φ∗
k(rσ)â

†
k . (5.99)

Conversely, the creation and annihilation operators â†k, âk associated with the
basis state |φk〉 can be expressed in terms of the field operators according to

âk =
∑

σ∈I

∫

d3rφ∗
k(rσ)ψ̂σ(r) or, equivalently, â†k =

∑

σ∈I

∫

d3rφk(rσ)ψ̂
†
σ(r)

(5.100)
in analogy with Eq. (5.90). Using Eq. (5.99), the commutation or anticommu-
tation relations (5.68) and (5.69) for the operators âk and â†k, as well as the
completeness relation (5.97), we obtain the commutation and anticommutation
laws

[ψ̂σ(r), ψ̂
†
σ′(r

′)]∓ = δσσ′δ(r− r′) , (5.101)

[ψ̂σ(r), ψ̂σ′(r
′)]∓ = [ψ̂†

σ(r), ψ̂
†
σ′(r

′)]∓ = 0 (5.102)
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for bosons and fermions, respectively. The operator that counts the total number
of particles in the system can now be expressed as

N̂ =
∞∑

k=0

â†kâk =
∑

σ∈I

∫

d3rψ̂†
σ(r)ψ̂σ(r) (5.103)

where ψ̂†
σ(r)ψ̂σ(r) represents the density operator of particles with spin σ at the

position r. In the case of fermions we have ψ̂†
σ(r)ψ̂

†
σ(r) = ψ̂σ(r)ψ̂σ(r) = 0 for all

r ∈ R3 and σ ∈ I, which expresses again the Pauli exclusion principle stating
that two fermionic particles with the same spin σ cannot be encountered at the
same position r.

The use of field operators is particularly convenient for the representation of
one- or two-body operators within the bosonic or fermionic many-body space.
Let us consider the one-body operator

A =
∞∑

k,k′=0

Akk′|φk〉〈φk′| (5.104)

with its matrix elements being given by

Akk′ = 〈φk|A|φk′〉 =
∑

σ∈I

∫

d3rφ∗
k(rσ)Aφk′(rσ) . (5.105)

Using Eqs. (5.105) and (5.99), we can express its many-body equivalent as

Â =

∞∑

k,k′=0

Akk′â
†
kâk′ =

∑

σ∈I

∫

d3rψ̂†
σ(r)Aψ̂σ(r) (5.106)

where on the right-hand side of Eq. (5.106) the one-body operator A acts on
the spatial dependence and the spin component of field operator ψ̂σ(r) in the
same way as it would for an ordinary wavefunction. Hence, the many-body
equivalent associated with a given one-body operator is obtained by writing down
the expression for the expectation value of this operator within the wavefunction
ψ ≡ ψσ(r) and then replacing ψσ(r) with ψ̂σ(r) and ψ

∗
σ(r) with ψ̂

†
σ(r).

Similarly, the many-body equivalent of the two-body operator

B =
∞∑

k1,k′1=0

∞∑

k2,k′2=0

Bk1k2k′1k
′

2
|φk1φk2〉〈φk′1φk′2| (5.107)

with

Bk1k2k′1k
′

2
= 〈φk1φk2 |B|φk′1φk′2〉 (5.108)

=
∑

σ1,σ2∈I

∫

d3r1

∫

d3r2φ
∗
k1
(r1σ1)φ

∗
k2
(r2σ2)Bφk′2(r2σ2)φk′1(r1σ1)
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can be expressed as

B̂ =
1

2

∞∑

k1,k′1=0

∞∑

k2,k′2=0

Bk1k2k′1k
′

2
â†k1 â

†
k2
âk′2 âk′1 (5.109)

=
1

2

∑

σ1,σ2∈I

∫

d3r1

∫

d3r2ψ̂
†
σ1(r1)ψ̂

†
σ2(r2)Bψ̂σ2(r2)ψ̂σ1(r1) . (5.110)

In the special case of a two-body interaction potential U ≡ U(r1, r2) = U(r2, r1),
we obtain the associated operator in the Fock space

Û =
1

2

∑

σ1,σ2∈I

∫

d3r1

∫

d3r2U(r1, r2)ψ̂
†
σ1
(r1)ψ̂

†
σ2
(r2)ψ̂σ2(r2)ψ̂σ1(r1) (5.111)

which can be seen as a straightforward quantum analog of the classical expres-
sion (5.75) for the total interaction energy. Indeed, as in Eq. (5.75) the pref-
actor 1/2 compensates for double countings of interaction energies between two
particles, while the specific order of the creation and annihiliation operators in
Eq. (5.111) ensures that artificial self-interaction terms, in which a given particle
would appear to interact with itself (corresponding to the excluded case i = j in
Eq. (5.75)), are not counted for the total interaction energy. Together with the
kinetic energy and the confinement of the particles within the external potential
V (r), the many-body Hamiltonian of a system of N indistinguishable bosonic or
fermionic particles with mass m that interact via U(r1, r2) is then written as

Ĥ =
∑

σ∈I

∫

d3rψ̂†
σ(r)

(

− ~2

2m

∂2

∂r2
+ V (r)

)

ψ̂σ(r) (5.112)

+
1

2

∑

σ1,σ2∈I

∫

d3r1

∫

d3r2U(r1, r2)ψ̂
†
σ1
(r1)ψ̂

†
σ2
(r2)ψ̂σ2(r2)ψ̂σ1(r1) .
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Chapter 6

Approximate methods for the

ground state

6.1 The variational principle

We now address the question how to determine the ground state of the Hamil-
tonian that describes a given many-body system. Indeed, the ground state of
a many-body system plays a particularly relevant role in a number of physical
contexts. Atoms and molecules, for instance, are, at not too high temperatures,
mostly encountered in their ground states concerning the electronic degrees of
freedom. Hence, a reliable numerical representation of the electronic ground state
is needed for the quantitative description of a number of dynamical processes in-
volving atoms and molecules, such as atomic collision, molecular vibration and
rotation, as well as laser-induced electronic excitation starting from the ground
state of an atom or molecule, to mention some examples.

Apart from a few exotic special cases, it is not possible to determine by
analytical means the ground state or any other eigenstate of the Hamiltonian
describing an interacting many-body system. From the numerical point of view,
one can try to compute those eigenstates by a diagonalization of the Hamiltonian
matrix that is obtained within a truncated basis of the many-body Hilbert space.
This procedure, however, can be computationally extremely expensive since the
dimension of the thereby obtained matrix scales approximately as ∼ LN where L
is the number of single-particle eigenstates considered within the truncated basis
and N is the number of particles.

On the other hand, the ground state is rather special within the many-body
eigenbasis of the Hamiltonian insofar as it corresponds to its lowest eigenenergy.
This specific property is exploited within the variational principle. The latter
states that for any Hamiltonian Ĥ the eigenspectrum of which is bounded from
below (i.e., for any Hamiltonian that actually has a ground state), the (normal-

23
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ized) ground state |φ0〉 is characterized by the property

E0 = 〈φ0|Ĥ|φ0〉 ≤
〈ψ|Ĥ|ψ〉
〈ψ|ψ〉 (6.1)

for all ψ ∈ H where H is the Hilbert space of the quantum system. This yields
the ground state energy

E0 = min
ψ∈H

〈ψ|Ĥ|ψ〉
〈ψ|ψ〉 (6.2)

as the lower bound of the expectation value of the Hamiltonian within any nor-
malized state ψ of the many-body system.

This particular property can be straightforwardly proven for the case of a
Hamiltonian Ĥ with a discrete spectrum1. Let us denote by |φn〉 the eigenstates
of the Hamiltonian, satisfying 〈φn|φn′〉 = δnn′ for all n, n′ ∈ N0, and the cor-
responding eigenenergies by En. Any state ψ of the Hilbert space can then be
represented within this eigenbasis of the Hamiltonian through a linear combina-
tion |ψ〉 = ∑∞

n=0Cn|φn〉 with complex coefficients Cn ∈ C. As Ĥ|φn〉 = En|φn〉
by definition, we then obtain

〈ψ|Ĥ|ψ〉 =
∞∑

n=0

|Cn|2En ≥ E0

∞∑

n=0

|Cn|2 = E0〈ψ|ψ〉 (6.3)

using the fact that En ≥ E0 for all n ∈ N0.
In practice, one can start with a reasonably good first approximation |ψ〉 to

the ground state |φ0〉 and then try to improve this approximation and eventually
obtain |φ0〉 by minimizing the right-hand side of Eq. (6.1) under variations of
ψ. Those variations can, in general, not be carried out within the entire many-
body Hilbert space. A common strategy consists then in restricting the variations
of ψ to a convenient subspace or submanifold of H within which the resulting
minimization procedure becomes numerically tractable. While this procedure
does, in general, not yield the exact ground state, one nevertheless obtains an
improved approximation ψ̃ to the ground state as compared to the initial guess
ψ, insofar as the new approximation ψ̃ generally satisfies the relation

〈ψ̃|Ĥ|ψ̃〉
〈ψ̃|ψ̃〉

≤ 〈ψ|Ĥ|ψ〉
〈ψ|ψ〉 . (6.4)

This new approximation thereby yields a refined upper bound for the exact
ground state energy E0 by virtue of Eq. (6.2).

To demonstrate how the variational principle can be applied in practice, let
us consider the simple case of a single particle in one spatial dimension governed

1The proof for a partially discrete and partially continuous spectrum follows a similar rea-
soning, but requires a more tedious formulation.
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by the Hamiltonian

Ĥ = − ~2

2m

∂2

∂x2
+

1

2
mω2x2 + αx4 (6.5)

with m,ω, α > 0. Obviously, for α = 0 we obtain the Hamiltonian associated
with a harmonic oscillator the ground state of which corresponds to a normalized
Gaussian wavefunction. For not too strong α > 0, we can make the ansatz that
the ground state wavefunction is still very well approximated by a normalized
Gaussian

φ0(x) ≃
1

√√
πa

exp

(

− x2

2a2

)

≡ φ
(a)
0 (x) (6.6)

whose width a > 0 is varied in order to minimize the expectation value of the
Hamiltonian. The latter is calculated as

E
(a)
0 ≡ 〈φ(a)

0 |Ĥ|φ(a)
0 〉 = ~2

4ma2
+

1

4
mω2a2 +

3

4
αa4 . (6.7)

As E
(a)
0 clearly diverges for a → 0 and a → ∞, it exhibits a global minimum at

some finite a > 0 at which we have d
da
E

(a)
0 = 0. This yields the equation

a4 =
~2

m2ω2
− 6α

mω2
a6 . (6.8)

In the presence of a weak quartic confinement with 0 < α < m2ω3/(9
√
3~) we

obtain

a =

√

mω2

36α

√

(1− i
√
3)γ + (1 + i

√
3)γ−1 − 2 (6.9)

with

γ =

(

1− 486
~2α2

m4ω6
+ 18

√
3i

~α

m2ω3

√

1− 243
~2α2

m4ω6

)1/3

(6.10)

as optimal choice for the width of the Gaussian, which simplifies to

a ≃
√

~

mω

(

1− 6~α

m2ω3
+O(α2)

)1/4

(6.11)

in linear order in α.

6.2 The Hartree appxroximation

We are now considering a system of N indistinguishable bosonic particles with
mass m and without spin, which are confined within the (one-body) potential
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V (r) and interact via the (two-body) interaction energy U(r − r′) = U(r′ − r).
The Hamiltonian of this system reads

Ĥ =

N∑

i=1

(

− ~
2

2m

∂2

∂r2i
+ V (ri)

)

+
1

2

N∑

i 6=j=1

U(ri − rj) . (6.12)

In the absence of interaction, i.e. for U ≡ 0, the eigenstates of the many-body
Hamiltonian would be directly given by the Fock states |n0, n1, . . .〉 associated
with the single-particle eigenbasis of the one-body kinetic-plus-potential Hamil-
tonian. Evidently, the many-body ground state |Φ0〉 of Ĥ is then obtained by
putting all particles in the energetically lowest eigenstate |φ0〉 of the one-body
Hamiltonian. In that case, all particles of the system would share the same
single-particle wavefunction (or orbital as we shall also name it in the following)
φ0(r).

In the framework of the Hartree approximation, we assume this to be the
case also in the presence of a non-vanishing (but not too strong) particle-particle
interaction. That is, the particles of the system are still supposed to share the
same single-particle orbital φ0 for U 6≡ 0. This latter orbital, however, is no
longer firmly identified with the ground state of the one-body Hamiltonian, but
is varied and optimized in order to minimize the expectation value of the many-
body Hamiltonian according to the variational principle.

Choosing a single-particle basis B1 = (|φk〉)k∈N0 = (|φ0〉, |φ1〉, . . .) that con-
tains as first element the (normalized) orbital φ0 to be determined, and introduc-
ing the associated creation and annihilation operators â†k, âk, we can express the
many-body ground state of the system as

|Φ0〉 =
1√
N !

(

â†0

)N

|−〉 = |N, 0, 0, . . .〉 . (6.13)

Rewriting the Hamiltonian (6.12) as

Ĥ =

∫

d3rψ̂†(r)

(

− ~2

2m

∂2

∂r2
+ V (r)

)

ψ̂(r)

+
1

2

∫

d3r1

∫

d3r2U(r1 − r2)ψ̂
†(r1)ψ̂

†(r2)ψ̂(r2)ψ̂(r1) (6.14)

using the field operators ψ̂(r) =
∑∞

k=0 φk(r)âk and ψ̂†(r) =
∑∞

k=0 φ
∗
k(r)â

†
k in

accordance with Eqs. (5.99) and (5.112), and evaluating the matrix elements

〈Φ0|â†kâk′|Φ0〉 = Nδk0δk′0 , (6.15)

〈Φ0|â†k1 â
†
k2
âk′2âk′1 |Φ0〉 = N(N − 1)δk10δk20δk′20δk′10 , (6.16)

we obtain for the expectation value of the many-body Hamiltonian

E0 ≡ 〈Φ0|Ĥ|Φ0〉 = N

∫

d3rφ∗
0(r)

(

− ~2

2m

∂2

∂r2
+ V (r)

)

φ0(r) (6.17)

+
1

2
N(N − 1)

∫

d3r1

∫

d3r2U(r1 − r2)|φ0(r1)|2|φ0(r2)|2 .
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We now have to determine the single-particle orbital φ0 such that the func-
tional E0 ≡ E0[φ0] is minmized. In analogy with the simple example considered
in Section 6.1, we calculate for this purpose the functional derivative of E0 with
respect to φ0(r) for all r ∈ R3. A complication is introduced by the fact that
φ0 represents a priori a complex-valued orbital (even though it will turn out at
the end of the calculation that this orbital can be chosen to be entirely real, in
view of the Hamiltonian (6.12) under consideration). The convenient approach
to be applied in this case consists in interpreting φ0(r) and φ

∗
0(r) as independent

complex fields (noting that complex conjugation does not represent an analytic
operation) and determining the complex functional derivative of E0 with respect
φ0(r) and φ

∗
0(r) separately. Setting those two functional derivatives to zero gives

then rise to two different equations for each r ∈ R3 one of which being the complex
conjugate of the other one.

To ensure the correct normalization of the single-particle orbital φ0 in this
variational method, we apply the technique of Lagrange multipliers and vary
the functional E0[φ0] − Nµ(

∫
d3r|φ0(r)|2 − 1) instead of E0[φ0]. The Lagrange

multiplier µ ∈ R is considered as an additional variable of the minimization
problem, such that calculating the derivative of the functional with respect to µ
and setting it to zero yields the correct normalization of φ0 as a constraint. The
functional derivative with respect to φ∗

0(r) then yields

0 =
δ

δφ∗
0(r)

[

N

∫

d3r′φ∗
0(r

′)

(

− ~2

2m

∂2

∂r′2
+ V (r′)− µ

)

φ0(r
′) +N

+
1

2
N(N − 1)

∫

d3r1

∫

d3r2U(r1 − r2)|φ0(r1)|2|φ0(r2)|2
]

(6.18)

= N

(

− ~2

2m

∂2

∂r2
+ V (r)− µ+ (N − 1)

∫

d3r′U(r − r′)|φ0(r
′)|2
)

φ0(r)

which is rewritten as
(

− ~
2

2m

∂2

∂r2
+ V (r) +

∫

d3r′U(r − r′)(N − 1)|φ0(r
′)|2
)

φ0(r) = µφ0(r) . (6.19)

This equation allows for a neat interpretation as being the effective (nonlinear)
Schrödinger equation describing an individual particle of this system. Indeed,
this particle would, within this Hartree approximation of the many-body ground
state, be subject not only to the external potential V (r) but also to an additional
effective potential

∫
d3r′U(r− r′)(N − 1)|φ0(r

′)|2 that arise from the interaction
with the other N−1 particles of the system. In the spirit of this interpretation, µ
then represents the total energy of this particle. Note that we do not simply have
E0[φ0] = Nµ for the optimized orbital φ0 in the presence of interaction. However,
one can show that in the limit of large N ≫ 1, in which we are safely allowed
to set N − 1 ≃ N , we have d

dN
E0[φ0] ≃ µ if φ0 solves the nonlinear Schrödinger

equation (6.19), or, in other words, dE0 = µdN . We are therefore entitled to
interpret µ as the chemical potential of the bosonic system under consideration.
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6.3 The Hartree-Fock equations

Let us finally consider a system of N indistinguishable fermions with semi-integer
spin. In contrast to the bosonic case treated in the previous section, fermions obey
the Pauli exclusion principle, which implies that the many-body ground state of
the fermionic system cannot be described by means of only one single-particle
state |φ0〉. Historically, Hartree therefore proposed to model the ground state of
the fermionic system by means of N orthogonal and normalized single-particle
states |φ0〉, . . . , |φN−1〉 such that the many-body ground state wavefunction would
read Φ0(ξ1, . . . , ξN) = φ0(ξ1) · · ·φN−1(ξN). This ansatz, however, is not in accor-
dance with the indistinguishability of the particles. It has to undergo entire
antisymmetrization in order to be compatible with the symmetry postulate for
fermions.

Undertaking such an antisymmetrization, we thereby obtain the Hartree-Fock
approximation for the ground state |Φ0〉 of the fermionic system. It essentially
states that there is an orthonormal basis B1 = (|φk〉)k∈N0 = (|φ0〉, |φ1〉, . . .) of
the single-particle Hilbert space H1 such that the ground state of the N -body
Hamiltonian is represented as the fermionic Fock state

|Φ0〉 = |φ−
N−1,...,1,0〉 = |1, 1, . . . , 1, 0, 0, . . .〉− = â†0â

†
1 · · · â†N−1|−〉 (6.20)

involving the first N elements |φ0〉, |φ1〉, . . . , |φN−1〉 of the basis B1. The corre-
sponding ground state wavefunction is then obtained as the Slater determinant

〈ξ1 · · · ξN |Φ0〉 =
1√
N !

∑

π∈ΠN

(±1)πφπ(0)(ξ1) · · ·φπ(N−1)(ξN) (6.21)

=
1√
N !

∣
∣
∣
∣
∣
∣
∣

φ0(ξ1) · · · φN−1(ξ1)
...

...
φ0(ξN) · · · φN−1(ξN)

∣
∣
∣
∣
∣
∣
∣

(6.22)

and the variational principle consists now in optimizing the single-particle states
φ0, . . . , φN−1 such that the expectation value of the Hamiltonian within this par-
ticular approximation of the ground state becomes minimal.

Let us specifically consider the Hamiltonian

Ĥ =

∫

dξψ̂†(ξ)H0ψ̂(ξ) +
1

2

∫

dξ1

∫

dξ2U(ξ1, ξ2)ψ̂
†(ξ1)ψ̂

†(ξ2)ψ̂(ξ2)ψ̂(ξ1) (6.23)

which contains the hermitian one-body operator H0 : H1 → H1 that describes
the kinetic energy and an external potential for the particles, as well as the two-
body interaction energy U(ξ1, ξ2) = U(ξ2, ξ1). As usual, the field operators are
represented as

ψ̂(ξ) =

∞∑

k=0

φk(ξ)âk and ψ̂†(ξ) =

∞∑

k=0

φ∗
k(ξ)â

†
k (6.24)
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within the single-particle basis B1. Evaluating

〈Φ0|â†kâk′|Φ0〉 =

{
δkk′ if k < N
0 otherwise

, (6.25)

〈Φ0|â†k1 â
†
k2
âk′2 âk′1 |Φ0〉 =

{
δk1k′1δk2k′2 − δk1k′2δk2k′1 if k1, k2 < N

0 otherwise
, (6.26)

we obtain the expectation value

E0 ≡ 〈Φ0|Ĥ|Φ0〉 =
N−1∑

k=0

∫

dξφ∗
k(ξ)H0φk(ξ) (6.27)

+
1

2

N−1∑

k1,k2=0

∫

dξ1

∫

dξ2U(ξ1, ξ2)|φk1(ξ1)|2|φk2(ξ2)|2

−1

2

N−1∑

k1,k2=0

∫

dξ1

∫

dξ2U(ξ1, ξ2)φ
∗
k1
(ξ1)φk2(ξ1)φ

∗
k2
(ξ2)φk1(ξ2)

of the many-body Hamiltonian. The second line of Eq. (6.27) contains the
Hartree term, which would also result from the simple Hartree approximation
Φ0(ξ1, . . . , ξN) = φ0(ξ1) · · ·φN−1(ξN), while the Fock term in the third line of
Eq. (6.27) accounts for the antisymmetry of the ground state wavefunction.

We now apply the variational method in order to minimize the energy E0 ≡
E0[φ0, . . . , φN−1] under the constraint that the wavefunctions φ0, . . . , φN−1 are
properly normalized. This normalization can be ensured by the introduction
of N Lagrange multipliers ǫ0, . . . , ǫN−1 ∈ R such that we consider the varia-
tion of the functional E0[φ0, . . . , φN−1] −

∑N−1
k=0 ǫk(

∫
dξ|φk(ξ)|2 − 1) instead of

E0[φ0, . . . , φN−1]. The functional derivative with respect to φ∗
k(ξ) then yields

0 =
δ

δφ∗
k(ξ)

[

E0[φ0, . . . , φN−1]−
N−1∑

k=0

ǫk

(∫

dξ|φk(ξ)|2 − 1

)]

= (H0 − ǫk)φk(ξ) +
N−1∑

k′=0

∫

dξ′U(ξ, ξ′)|φk′(ξ′)|2φk(ξ)

−
N−1∑

k′=0

∫

dξ′U(ξ, ξ′)φk′(ξ)φ
∗
k′(ξ

′)φk(ξ
′) (6.28)

for all k = 0, . . . , N − 1. This set of equations is equivalent to the Hartree-Fock

equations

(HHFφk) (ξ) = ǫkφk(ξ) (6.29)
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with

(HHFψ) (ξ) =

(

H0 +
N−1∑

k′=0

∫

dξ′U(ξ, ξ′)|φk′(ξ′)|2
)

ψ(ξ)

−
N−1∑

k′=0

∫

dξ′U(ξ, ξ′)φk′(ξ)φ
∗
k′(ξ

′)ψ(ξ′) . (6.30)

φ0, . . . , φN−1 are therefore given as eigenstates of the effective (non-local) single-
particle Hamiltonian HHF . They are orthogonal by construction as HHF is her-
mitian. Clearly, in view of minimizing the energy functional E0[φ0, . . . , φN−1],
one would choose those eigenstates that exhibit the lowest possible eigenvalues
ǫ0 ≤ . . . ≤ ǫN−1 within the spectrum of HHF . Again, the effective Hamiltonian
HHF parametrically depends on the states φk to be determined, and we therefore
have to find the solutions of a set of nonlinear stationary Schrödinger equations
in a self-consistent manner.

Let us now consider the specific case of N electrons with spin 1/2 that are
confined within the external potential V (r) and interact via the electrostatic
interaction energy

U(r1 − r2) =
e2

4πǫ0|r1 − r2|
. (6.31)

The Hamiltonian of this many-body system reads

Ĥ =
∑

σ=±1/2

∫

d3rψ̂†
σ(r)

(

− ~
2

2m

∂2

∂r2
+ V (r)

)

ψ̂σ(r) (6.32)

+
1

2

∑

σ1,σ2=±1/2

∫

d3r1

∫

d3r2U(r1 − r2)ψ̂
†
σ1(r1)ψ̂

†
σ2(r2)ψ̂σ2(r2)ψ̂σ1(r1) .

As this Hamiltonian is not acting on the spin degree of freedom of the electron
(which would be different, e.g., in the presence of a relativistic spin-orbit term),
it makes sense to consider a Hartree-Fock approximation in which the electrons
occupy single-particle states that have a well-defined spin. We can then rewrite
those single-particle states as |φk〉 ≡ |φls〉 with l ≡ l(k) ∈ N0 being the orbital
quantum number and s ≡ s(k) = ±1/2 being the spin of the state |φk〉. The
corresponding wavefunction then reads

φk(ξ) = φls(rσ) = ϕl(r)δσs (6.33)

where ϕl(r) is the orbital associated with |φk〉. The expression (6.24) for the
electronic field operators can then be written as

ψ̂σ(r) =

∞∑

l=0

ϕl(r)âlσ and ψ̂†
σ(r) =

∞∑

k=0

ϕ∗
l (r)â

†
lσ (6.34)
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where the operators â†lσ, âlσ respectively create and annihilate an electron with
spin σ in the orbital ϕl. We then obtain

∑

σ1,σ2=±1/2

〈Φ0|ψ̂†
σ1(r1)ψ̂

†
σ2(r2)ψ̂σ2(r2)ψ̂σ1(r1)|Φ0〉 = (6.35)

=
N−1∑

k1,k2=0

[
|ϕl(k1)(r1)|2|ϕl(k2)(r2)|2 − δs(k1),s(k2)ϕ

∗
l(k1)

(r1)ϕl(k2)(r1)ϕ
∗
l(k2)

(r2)ϕl(k1)(r2)
]

for the expectation value of the two-body term in the Hamiltonian (6.32). Hence,
the Fock term that accounts for the antisymmetry of the ground state wavefunc-
tion becomes significant only if the two spins s(k1) and s(k2) of the involved
single-particle states |φk1〉 and |φk2〉 are identical.

Let us first consider the case N = 2L with L ∈ N, i.e., there is an even number
of electrons in the system. As illustrated in the left panel of Fig. 6.1, the most
obvious choice for the ground state of the many-body system in the framework
of the Hartree-Fock approximation would, in that case, consist in representing
this ground state by L orthogonal and normalized orbitals ϕ0, . . . , ϕL−1 each of
which being occupied by two electrons2, one with spin σ = +1/2 and the other
one with spin σ = −1/2. This yields the expectation value

〈Φ0|Ĥ|Φ0〉 = 2
L−1∑

l=0

∫

d3rϕ∗
l (r)

(

− ~2

2m

∂2

∂r2
+ V (r)

)

ϕl(r) (6.36)

+2

L−1∑

l1,l2=0

∫

d3r1

∫

d3r2U(r1 − r2)|ϕl1(r1)|2|ϕl2(r2)|2

−
L−1∑

l1,l2=0

∫

d3r1

∫

d3r2U(r1 − r2)ϕ
∗
l1
(r1)ϕl2(r1)ϕ

∗
l2
(r2)ϕl1(r2)

of the many-body Hamiltonian (6.32), where the numerical prefactors in front
of the individual contributions arise from the simple summations over the spin
degree of freedom (keeping in mind that the Fock term in the third line requires
an identical spin of the two involved electrons). We then obtain the Hartree-Fock
equations

(

− ~
2

2m

∂2

∂r2
+ V (r) + 2

L−1∑

l′=0

∫

d3r′U(r − r′)|ϕl′(r′)|2
)

ϕl(r) (6.37)

−
L−1∑

l′=0

∫

d3r′U(r − r′)ϕl′(r)ϕ
∗
l′(r

′)ϕl(r
′) = ǫlϕl(r)

to be solved for l = 0, . . . , L− 1 in a self-consistent manner.

2This might be different for some many-electron atoms in the presence of spin-orbit and
magnetic electron-electron interactions, for which Hund’s rule predicts that degenerate subshells
should first be populated with a single choice for the spin.
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N = 6 N = 7

Figure 6.1: Schematic representation of the Hartree-Fock approximation to the
ground state of a system containing an even (N = 6, left panel) or an odd number
(N = 7, right panel) of electrons. The horizontal lines represent the levels that
correspond to the eigenvalues ǫl of the Hartree-Fock Hamiltonian. In the even
case, the N/2 energetically lowest single-particle orbitals are populated with two
electrons per orbital, one with “spin up” and the other one with “spin down”.
In the odd case, one additional orbital is populated with the extra electron that
can have either spin up or spin down.

In the case of an odd number of electrons, i.e. N = 2L + 1 with L ∈ N, we
would, as illustrated in the right panel of Fig. 6.1, most naturally choose to put
the extra electron in an additional orbital ϕL with either spin σ = +1/2 or spin
σ = −1/2 (this latter choice concerning the spin does not really matter). This
then yields the Hartree-Fock equations

(

− ~2

2m

∂2

∂r2
+ V (r) + 2

L−1∑

l′=0

∫

d3r′U(r − r′)|ϕl′(r′)|2
)

ϕl(r) (6.38)

−
L−1∑

l′=0

∫

d3r′U(r − r′)ϕl′(r)ϕ
∗
l′(r

′)ϕl(r
′)

+

∫

d3r′U(r− r′)
[
|ϕL(r′)|2ϕl(r)− ϕL(r)ϕ

∗
L(r

′)ϕl(r
′)
]

= ǫlϕl(r)

to be solved for l = 0, . . . , L in a self-consistent manner. Note that the third
line of the left-hand side of Eq. (6.38) vanishes in the special case l = L, which
clearly accounts for the fact that the extra electron in the orbital ϕL does not
electrostatically interact with itself.

It should be noted that the single-particle orbitals ϕl and their associated
energy levels ǫl do not have a physical meaning in the strict sense, as they are
obtained within the framework of an approximation. However, the picture that
is suggested by Fig. 6.1, namely that two electrons with opposite spin occupy
a single-particle orbital that is not too different from the corresponding eigen-
function of the one-body Hamiltonian in the non-interacting case, nevertheless
represents a convenient visualization of the basic structure of the many-body
ground state, which becomes closer to reality the more electrons are involved.
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Providing this approximate picture is indeed a major asset of the Hartree-Fock
approach. From the numerical point of view, other methods resulting from the
density functional theory (which is also based on the variational principle) are
nowadays more commonly used in order to provide a quantitative desription of
the ground state of an electronic many-body system.


